Published: 1970 Received: February 14, 1970Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: AFFILIATIONDetails: Wrong :
1) Tohoku University
Right :
1) Tôhoku University
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) L. P. Eisenhart, Continuous groups of transformations, Princeton Univ. Press, 1933. 2) G. Fubini, Sugli spazii che ammettono un gruppo continuo di movimenti, Ann. Mat. Pura Appl., (3) 8 (1903), 39-81. 3) Y. Hatakeyama, Y. Ogawa and S. Tanno, Some properties of manifolds with contact metric structure, Tohoku Math. J., 15 (1963), 42-48. 4) S. Ishihara, Homogeneous Riemannian spaces of four dimension, J. Math. Soc Japan, 7 (1955), 345-370. 5) S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963. 6) Y. Y. Kuo, On almost contact 3-structure, to appear in Tohoku Math. J. 7) M. Obata, On n-dimensional homogeneous spaces of Lie groups of dimension greater than n(n-1)/2, J. Math. Soc. Japan, 7 (1955), 371-388. 8) S. Sasaki, Almost contact manifolds, Lecture notes I, II, III, Tohoku University. 9) S. Tachibana and W. N. Yu, On a Riemannian space admitting more than one Sasakian structure, to appear. 10) S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21-38. 11) S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature, Tohoku Math. J., 21 (1969), 501-507. 12) H. C. Wang, On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc., 22 (1947), 5-9. 13) K. Yano, On n-dimensional Riemannian spaces admitting a group of motions of order n(n-1)/2+1, Trans. Amer. Math. Soc., 74 (1953), 260-279.
Right : [1] L. P. Eisenhart, Continuous groups of transformations, Princeton Univ. Press, 1933. [2] G. Fubini, Sugli spazii che ammettono un gruppo continuo di movimenti, Ann. Mat. Pura Appl., (3) 8 (1903), 39-81. [3] Y. Hatakeyama, Y. Ogawa and S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J., 15 (1963), 42-48. [4] S. Ishihara, Homogeneous Riemannian spaces of four dimension, J. Math. Soc Japan, 7 (1955), 345-370. [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963. [6] Y. Y. Kuo, On almost contact 3-structure, to appear in Tôhoku Math. J. [7] M. Obata, On n-dimensional homogeneous spaces of Lie groups of dimension greater than n(n-1)/2, J. Math. Soc. Japan, 7 (1955), 371-388. [8] S. Sasaki, Almost contact manifolds, Lecture notes I, II, III, Tôhoku University. [9] S. Tachibana and W. N. Yu, On a Riemannian space admitting more than one Sasakian structure, to appear. [10] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1969), 21-38. [11] S. Tanno, Sasakian manifolds with constant ∅-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501-507. [12] H. C. Wang, On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc., 22 (1947), 5-9. [13] K. Yano, On n-dimensional Riemannian spaces admitting a group of motions of order n(n-1)/2+1, Trans. Amer. Math. Soc., 74 (1953), 260-279.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -