Published: 1972 Received: August 24, 1971Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. 2) Ph. Courrège, Générateur infinitesimal d'un semi-groupe de convolution sur Rn, et formule de Lévy-Khintchine, Bull. Sci. Math., 88 (1964), 3-30. 3) H. Cramér, Collective Risk Theory, Ab Nordiska Boghandein, Stockholm, 1955. 4) W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1966. 5) C.S. Herz, Théorie élémentaire des distributions de Beurling, Publication du Séminaire de Mathématiques d'Orsay, 2éme année, 1962/3. 6) G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81 (1956), 264-293. 7) K. Ito, On stochastic differential equations, Mem. Amer. Math. Soc., No. 4(1951). 8) K. Ito, Stochastic Processes II, (in Japanese), Iwanami, Tokyo, 1957. (This book has a Russian translation and an English translation by Y. Ito in a mimeographed version.) 9) K. Sato, Potential operators for Markov processes, to appear. 10) L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966. 11) S. Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan, 14 (1962), 170-198. 12) T. Watanabe, On balayées of excessive measures and functions with respect to resolvents, 311-341 of Séminaire de Probabilités V, Université de Strasbourg, Lecture Notes in Math. No. 191, Springer, Berlin, 1971. 13) T. Watanabe, An integro-differential equation for a compound Poisson process with drift and the integral equation of H. Cramér, Osaka J. Math., 8 (1971), 377-383. 14) K. Yosida, An operator-theoretical treatment of temporally homogeneous Markoff process, J. Math. Soc. Japan, 1 (1949), 244-253. 15) K. Yosida, Functional Analysis, Springer, Berlin, 1965.
Right : [1] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. [2] Ph. Courrège, Générateur infinitesimal d'un semi-groupe de convolution sur Rn, et formule de Lévy-Khintchine, Bull. Sci. Math., 88 (1964), 3-30. [3] H. Cramér, Collective Risk Theory, Ab Nordiska Boghandein, Stockholm, 1955. [4] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1966. [5] C. S. Herz, Théorie élémentaire des distributions de Beurling, Publication du Séminaire de Mathématiques d'Orsay, 2éme année, 1962/3. [6] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc., 81 (1956), 264-293. [7] K. Itô, On stochastic differential equations, Mem. Amer. Math. Soc., No. 4 (1951). [8] K. Itô, Stochastic Processes II, (in Japanese), Iwanami, Tokyo, 1957. (This book has a Russian translation and an English translation by Y. Itô in a mimeographed version.) [9] K. Sato, Potential operators for Markov processes, to appear. [10] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966. [11] S. Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan, 14 (1962), 170-198. [12] T. Watanabe, On balayées of excessive measures and functions with respect to resolvents, 311-341 of Séminaire de Probabilités V, Université de Strasbourg, Lecture Notes in Math. No. 191, Springer, Berlin, 1971. [13] T. Watanabe, An integro-differential equation for a compound Poisson process with drift and the integral equation of H. Cramér, Osaka J. Math., 8 (1971), 377-383. [14] K. Yosida, An operator-theoretical treatment of temporally homogeneous Markoff process, J. Math. Soc. Japan, 1 (1949), 244-253. [15] K. Yosida, Functional Analysis, Springer, Berlin, 1965.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -