Published: 1972 Received: March 10, 1971Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. 2) D. Gorenstein, Finite groups, Harper and Row, New York, 1968. 3) D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. 4) N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. 5) W. M. Kantor, M. E. O'Nan and G. M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic (to appear). 6) H. Kimura, On some doubly transitive permutation groups of degree n and order 2l(n-1)n, J. Math. Soc. Japan, 22 (1970), 263-277. 7) H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka. J. Math., 7 (1970), 275-290. 8) H. Kimura, On some doubly transitive groups such that the stabilizer of two symbols is cyclic, J. Fac. Sci. Hokkaido Univ. (to appear). 9) H. Lüneburg, Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Z., 85 (1964), 419-450. 10) H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
Right : [1] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. [2] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. [3] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. [4] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. [5] W. M. Kantor, M. E. O'Nan and G. M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic (to appear). [6] H. Kimura, On some doubly transitive permutation groups of degree n and order 2l(n-1)n, J. Math. Soc. Japan, 22 (1970), 263-277. [7] H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka. J. Math., 7 (1970), 275-290. [8] H. Kimura, On some doubly transitive groups such that the stabilizer of two symbols is cyclic, J. Fac. Sci. Hokkaido Univ. (to appear). [9] H. Lüneburg, Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Z., 85 (1964), 419-450. [10] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -