Published: 1973 Received: March 27, 1972Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S.B. Conlon, Monomial representations under integral similarity, J. Algebra, 13 (1969), 496-508. 2) S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, 25 (1973), 7-26. 3) H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., 121 (1968), 1-29. 4) I. Reiner and S. Ullom, Class groups of integral group rings, Trans. Amer. Math. Soc., 170 (1972), 1-30.Quasi-permutation modules over finite groups 421 5) D.S. Rim, On projective class groups, Trans. Amer. Math. Soc., 98 (1961), 459-467. 6) A.V. Roiter, On integral representations belonging to a genus, Izv. Akad. Nauk SSSR, 30 (1966), 1315-1324. 7) P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv. der Math., 9 (1958), 241-250. 8) M. Rosen, Representations of twisted group rings, Thesis at Princeton Univ., 1963. 9) P. Samuel, Some remarks on Luroth's theorem, Mem. Univ. Kyoto, 27 (1953), 223-224. 10) T. Sumioka, A note on the Grothendieck group of a finite group, to appear in Osaka J. Math. 11) R.G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. 12) R.G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), 85-110. 13) R.G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math., 7 (1969), 145-158. 14) V.E. Voskresenskii, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR, 34 (1970), 3-19. 15) V.E. Voskresenskii, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field Q(x1, …, xn), Izv. Akad. Nauk SSSR, 34 (1970), 366-375.
Right : [1] S. B. Conlon, Monomial representations under integral similarity, J. Algebra, 13 (1969), 496-508. [2] S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, 25 (1973), 7-26. [3] H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., 121 (1968), 1-29. [4] I. Reiner and S. Ullom, Class groups of integral group rings, Trans. Amer. Math. Soc., 170 (1972), 1-30. [5] D. S. Rim, On projective class groups, Trans. Amer. Math. Soc., 98 (1961), 459-467. [6] A. V. Roiter, On integral representations belonging to a genus, Izv. Akad. Nauk SSSR, 30 (1966), 1315-1324. [7] P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv. der Math., 9 (1958), 241-250. [8] M. Rosen, Representations of twisted group rings, Thesis at Princeton Univ., 1963. [9] P. Samuel, Some remarks on Lüroth's theorem, Mem. Univ. Kyoto, 27 (1953), 223-224. [10] T. Sumioka, A note on the Grothendieck group of a finite group, to appear in Osaka J. Math. [11] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578. [12] R. G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), 85-110. [13] R. G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math., 7 (1969), 145-158. [14] V. E. Voskresenskii, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR, 34 (1970), 3-19. [15] V. E. Voskresenskii, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field Q(x1, …, xn), Izv. Akad. Nauk SSSR, 34 (1970), 366-375.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -