Published: 1973 Received: June 01, 1972Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. Agmon, Lecture on elliptic boundary value problems, VAN NOSTRAND,1965. 2) S. Agmon, On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math., 18 (1965), 627-663. 3) S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rational Mech. Anal., 28 (1967), 165-183. 4) S. Agmon and Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math., 5 (1967), 1-30. 5) L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, Yeshiva Univ., 1966. 6) L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc., 10 (1967), 288-307. 7) Y. Kannai, On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 23 (1969), 563-584. 8) H. Kumano-go, Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. 9) K. Maruo, Asymptotic distribution of eigenvalues of non-symmetric operators associated with strongly elliptic sesquilinear forms, to appear.
Right : [1] S. Agmon, Lecture on elliptic boundary value problems, VAN NOSTRAND, 1965. [2] S. Agmon, On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math., 18 (1965), 627-663. [3] S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rational Mech. Anal., 28 (1967), 165-183. [4] S. Agmon and Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math., 5 (1967), 1-30. [5] L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, Yeshiva Univ., 1966. [6] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc., 10 (1967), 288-307. [7] Y. Kannai, On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of semi-elliptic systems, Ann. Scuola Norm. Sup. Pisa, Ser. 3, 23 (1969), 563-584. [8] H. Kumano-go, Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. [9] K. Maruo, Asymptotic distribution of eigenvalues of non-symmetric operators associated with strongly elliptic sesquilinear forms, to appear.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -