Published: 1974 Received: November 20, 1972Available on J-STAGE: September 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: September 29, 2006Reason for correction: -Correction: TITLEDetails: Wrong : A note on complex K-theory of infinite CW-complexes Right : A note on complex K-theory of infinite CW-complexes
Date of correction: September 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. W. Anderson and L. Hodgkin, The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317-329. 2) S. Araki and Z. Yosimura, A spectral sequence associated with a cohomology theory of infinite CW complexes, Osaka J. Math., 9 (1972), 351-365. 3) A. Dold, Relations between ordinary and extraordinary homology, Colloq. on algebraic topology, Aarhus Univ., 1962, 2-9. 4) S. Eilenberg and S. MacLane, Relation between homology and homotopy groups of spaces, II, Ann. of Math., 51 (1950), 514-533. 5) S. Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann, of Math., 51 (1950), 499-513. 6) J. Milnor, The geometric realization of semi-simplicial complex, Ann, of Math., 65 (1957), 357-362. 7) J. W. Vick, Pontryagin duality in K-theory, Proc. Amer. Math. Soc., 24 (1970), 611-616. 8) Z. Yosimura, On cohomology theories of infinite CW-complexes, II, Publ. RIMS, Kyoto Univ., 8 (1972/73), 483-508.9] Z. Yosimura, Projective dimension of complex bordism modules of CW-spectra, I, Osaka J. Math., 10 (1973), 545-564.
Right : [1] D. W. Anderson and L. Hodgkin, The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317-329. [2] S. Araki and Z. Yosimura, A spectral sequence associated with a cohomology theory of infinite CW-complexes, Osaka J. Math., 9 (1972), 351-365. [3] A. Dold, Relations between ordinary and extraordinary homology, Colloq. on algebraic topology, Aarhus Univ., 1962, 2-9. [4] S. Eilenberg and S. MacLane, Relation between homology and homotopy groups of spaces, II, Ann. of Math., 51 (1950), 514-533. [5] S. Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math., 51 (1950), 499-513. [6] J. Milnor, The geometric realization of semi-simplicial complex, Ann. of Math., 65 (1957), 357-362. [7] J. W. Vick, Pontryagin duality in K-theory, Proc. Amer. Math. Soc., 24 (1970), 611-616. [8] Z. Yosimura, On cohomology theories of infinite CW-complexes, II, Publ. RIMS, Kyoto Univ., 8 (1972/73), 483-508. [9] Z. Yosimura, Projective dimension of complex bordism modules of CW-spectra, I, Osaka J. Math., 10 (1973), 545-564.
Date of correction: September 29, 2006Reason for correction: -Correction: PDF FILEDetails: -