Published: 1975 Received: June 12, 1974Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) F. Odqvist, Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten, Math. Z., 32 (1930), 329-375. 2) J. Cannon and G. Knightly, Some continuous dependence theorems for viscous fluid motions, SIAM J. Appl. Math., 18 (1970), 627-641. 3) R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. 19 Amer. Math. Soc. (1965). 4) R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), 363-406. 5) H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I, Arch. Rational Mech. Anal., 16 (1964) 269-315. 6) J. Heywood, On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions, Arch. Rational Mech. Anal., 37 (1970), 48-60. 7) T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961), 305-309. 8) A. Kiselev and O. Ladyzhenskaya, On the existence and uniqueness of non-compressible fluid, Izv. Akad. Nauk SSSR ser. Mat., 21 (1957), 655-680 (Amer. Math. Soc. Transl., (2) 24 (1963), 79-106). 9) O. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969. 10) G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173-182. 11) J. Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal., 3 (1959), 1-13. 12) J. Serrin, The initial value problem for the Navier-Stokes equations, Proc. Symp. Nonlinear Problems (Madison, Wis., 1962) Univ. of Wisconsin Press, Madison, Wis., 1963, 69-98. 13) P. Sobolevski, On the non-stationary equations of the hydrodynamics of a viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48. 14) W. Velte, Über emn stabilitatskriterium der Hydrodynamik, Arch. Rational Mech. Anal., 9 (1962), 9-20. 15) K. Yosida, Functional Analysis, Springer Verlag, Berlin-Heidelberg-New York 1966. 16) S. Krein, Linear Differential Equations in a Banach Space, Moskow, 1967 (in, Russian). 17) H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Circ. Mat. Palermo, 39 (1915), 1-50. 18) J. Heywood, The exterior nonstationary problem for the Navier-Stokes equations, Acta Math., 129 (1972), 11-34. 19) G. Knightly, On a class of global solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 21 (1966), 211-245. 20) K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.
Right : [1] F. Odqvist, Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten, Math. Z., 32 (1930), 329-375. [2] J. Cannon and G. Knightly, Some continuous dependence theorems for viscous fluid motions, SIAM J. Appl. Math., 18 (1970), 627-641. [3] R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. 19 Amer. Math. Soc. (1965). [4] R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), 363-406. [5] H. Fujita and T. Kato, On the Navier-Stokes initial value problems. I, Arch. Rational Mech. Anal., 16 (1964) 269-315. [6] J. Heywood, On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions, Arch. Rational Mech. Anal., 37 (1970), 48-60. [7] T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961), 305-309. [8] A. Kiselev and O. Ladyzhenskaya, On the existence and uniqueness of non-compressible fluid, Izv. Akad. Nauk SSSR ser. Mat., 21 (1957), 655-680 (Amer. Math. Soc. Transl., (2) 24 (1963), 79-106). [9] O. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969. [10] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173-182. [11] J. Serrin, On the stability of viscous fluid motions, Arch. Rational Mech. Anal., 3 (1959), 1-13. [12] J. Serrin, The initial value problem for the Navier-Stokes equations, Proc. Symp. Nonlinear Problems (Madison, Wis., 1962) Univ. of Wisconsin Press, Madison, Wis., 1963, 69-98. [13] P. Sobolevski, On the non-stationary equations of the hydrodynamics of a viscous fluid, Dokl. Akad. Nauk SSSR, 128 (1959), 45-48. [14] W. Velte, Über ein stabilitatskriterium der Hydrodynamik, Arch. Rational Mech. Anal., 9 (1962), 9-20. [15] K. Yosida, Functional Analysis, Springer Verlag, Berlin-Heidelberg-New York 1966. [16] S. Krein, Linear Differential Equations in a Banach Space, Moskow, 1967 (in, Russian). [17] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Circ. Mat. Palermo, 39 (1915), 1-50. [18] J. Heywood, The exterior nonstationary problem for the Navier-Stokes equations, Acta Math., 129 (1972), 11-34. [19] G. Knightly, On a class of global solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 21 (1966), 211-245. [20] K. Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43 (1967), 827-832.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -