Published: 1976 Received: September 09, 1975Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Leo Sario on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. Glasner and R. Katz, On the behavior of solutions of Δu=Pu at the Royden boundary, J, d'Analyse Math., 22 (1969), 345-354. 2) M. Nakai, Dirichlet finite solutions of Δu=Pu on open Riemann surfaces, Kodai Math. Sem. Rep., 23 (1971), 385-397. 3) M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. 4) M. Nakai, Canonical isomorphisms of energy finite solutions of Δu=Pu on open Riemann surfaces, Nagoya Math. J., 56 (1974), 79-84. 5) M. Nakai, An example on canonical isomorphism, Seminar Note, 1975. 6) H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. 271 (1959), 1-27. 7) L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970. 8) I. Singer, Dirichlet finite solutions of Δu=Pu, Proc. Amer. Math. Soc., 32 (1972), 464-468. 9) I. Singer, Boundary isomorphism between Dirichlet finite solutions of Δu=Pu and harmonic functions, Nagoya Math. J., 50 (1973), 7-20. 10) M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959. 11) K. Yosida, Functional Analysis, Springer, 1965.
Right : [1] M. Glasner and R. Katz, On the behavior of solutions of Δu=Pu at the Royden boundary, J. d'Analyse Math., 22 (1969), 345-354. [2] M. Nakai, Dirichlet finite solutions of Δu=Pu on open Riemann surfaces, Kodai Math. Sem. Rep., 23 (1971), 385-397. [3] M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. [4] M. Nakai, Canonical isomorphisms of energy finite solutions of Δu=Pu on open Riemann surfaces, Nagoya Math. J., 56 (1974), 79-84. [5] M. Nakai, An example on canonical isomorphism, Seminar Note, 1975. [6] H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. 271 (1959), 1-27. [7] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970. [8] I. Singer, Dirichlet finite solutions of Δu=Pu, Proc. Amer. Math. Soc., 32 (1972), 464-468. [9] I. Singer, Boundary isomorphism between Dirichlet finite solutions of Δu=Pu and harmonic functions, Nagoya Math. J., 50 (1973), 7-20. [10] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959. [11] K. Yosida, Functional Analysis, Springer, 1965.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -