Published: 1978 Received: August 30, 1976Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973. 2) W. Craig, Linear reasoning. A new form of the Herbrand-Gentzen theorem, J. Symbolic Logic, 22 (1957), 250-268. 3) L. Henkin, An extension of the Craig-Lyndon interpolation theorem, J. Symbolic Logic, 28 (1963), 201-216. 4) H. J. Keisler, Theory of models with generalized atomic formulas, J. Symbolic Logic, 25 (1960), 1-26. 5) H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971. 6) S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand, Princeton, 1952. 7) E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math., LVII (1965), 253-272. 8) R. C. Lyndon, An interpolation theorem in the predicate calculus, Pacific J. Math., 9 (1959), 129-42. 9) R. C. Lyndon, Properties preserved under homomorphism, Pacific J. Math., 9 (1959), 143-154. 10) N. Motohashi, Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 4 (1972), 85-150. 11) A. Oberschelp, On the Craig-Lyndon interpolation theorem, Notices of Amer. Math. Soc., 14 (1967), 142. 12) A. Oberschelp, On the Craig-Lyndon interpolation theorem, J. Symbolic Logic, 33 (1968), 271-274. 13) A. Robinson, A result on consistency and its application to the theory of definition, Koninkl. Ned. Akad. Wetensch. Proc. Ser. A, 59 (=Indag. Math., 18) (1956), 47-58. 14) A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra, 2nd, revised printing, North-Holland, Amsterdam, 1974. 15) J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.
Right : [1] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973. [2] W. Craig, Linear reasoning. A new form of the Herbrand-Gentzen theorem, J. Symbolic Logic, 22 (1957), 250-268. [3] L. Henkin, An extension of the Craig-Lyndon interpolation theorem, J. Symbolic Logic, 28 (1963), 201-216. [4] H. J. Keisler, Theory of models with generalized atomic formulas, J. Symbolic Logic, 25 (1960), 1-26. [5] H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam, 1971. [6] S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand, Princeton, 1952. [7] E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math., LVII (1965), 253-272. [8] R. C. Lyndon, An interpolation theorem in the predicate calculus, Pacific J. Math., 9 (1959), 129-42. [9] R. C. Lyndon, Properties preserved under homomorphism, Pacific J. Math., 9 (1959), 143-154. [10] N. Motohashi, Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 4 (1972), 85-150. [11] A. Oberschelp, On the Craig-Lyndon interpolation theorem, Notices of Amer. Math. Soc., 14 (1967), 142. [12] A. Oberschelp, On the Craig-Lyndon interpolation theorem, J. Symbolic Logic, 33 (1968), 271-274. [13] A. Robinson, A result on consistency and its application to the theory of definition, Koninkl. Ned. Akad. Wetensch. Proc. Ser. A, 59 (=Indag. Math., 18) (1956), 47-58. [14] A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra, 2nd, revised printing, North-Holland, Amsterdam, 1974. [15] J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Massachusetts, 1967.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -