Published: 1978 Received: October 18, 1976Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. Beals, Spatial inhomogeneous pseudo-differential operators, III, (to appear). 2) A.P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185-1187. 3) Yu. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk, 30: 2 (1975), 57-114=Russian Math. Surveys, 30: 2 (1975), 59-118. 4) Yu. V. Egorov, On subelliptic operators, Uspehi Mat. Nauk, 30: 3 (1975), 57-104 =Russian Math. Surveys, 30: 3 (1975). 5) V.S. Fedii, On a criterion for hypoellipticity, Mat. Sb., 85 (1971), 18-48=Math. USSR Sb., 14 (1971), 15-45. 6) V.V. Grushin, On a class of hypoelliptic operators, Mat. Sb., 83 (1970), 456-473=Math. USSR Sb., 12 (1970), 458-476. 7) V.V. Grushin, Hypoelliptic differential equations and pseudodifferential operators with operator valued symbols, Mat. Sb., 88 (1972), 504-521=Math. USSR Sb., 17 (1972), 497-514. 8) L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc., 10 (1967), 138-183. 9) L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. 10) L. Hörmander, A class of hypoelliptic operator with double characteristics, Math. Ann., 217 (1975), 165-188. 11) Y. Kato, On a class of hypoelliptic differential operators, Proc. Japan Acad., 49 (1970), 33-37. 12) H. Kumano-go, Algebras of pseudo-differential operators, J, Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. 13) H. Kumano-go, Pseudo-differential operators, Iwanami Publisher, Tokyo, 1974 (in Japanese). 14) H. Kumano-go, Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem, J. Math. Soc. Japan, 27 (1975), 113-120. 15) H. Kumano-go and K. Taniguchi, Oscillatory integrals of symbols of pseudo-differential operators on Rn and operators of Fredholm type, Proc. Japan Acad., 49 (1973), 397-402. 16) O.A. Oleinik and E.V. Radkevich, Second order equations with non-negative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, 1973. 17) K. Taniguchi, On the hypoellipticity of the operator a(x, Dx)+g(x)b(x, y, Dy), Math. Japon., 20 (1976), 301-320. 18) F. Treves, An invariant criterion of hypoellipticity, Amer. J. Math., 83 (1961), 645-668. 19) C. Tsutsumi, Parametrices for degenerate operators of Grushin's type, (to appear).
Right : [1] R. Beals, Spatial inhomogeneous pseudo-differential operators, III, (to appear). [2] A. P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U. S. A., 69 (1972), 1185-1187. [3] Yu. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk, 30: 2 (1975), 57-114=Russian Math. Surveys, 30: 2 (1975), 59-118. [4] Yu. V. Egorov, On subelliptic operators, Uspehi Mat. Nauk, 30: 3 (1975), 57-104=Russian Math. Surveys, 30: 3 (1975). [5] V. S. Fedii, On a criterion for hypoellipticity, Mat. Sb., 85 (1971), 18-48=Math. USSR Sb., 14 (1971), 15-45. [6] V. V. Grushin, On a class of hypoelliptic operators, Mat. Sb., 83 (1970), 456-473=Math. USSR Sb., 12 (1970), 458-476. [7] V. V. Grushin, Hypoelliptic differential equations and pseudodifferential operators with operator valued symbols, Mat. Sb., 88 (1972), 504-521=Math. USSR Sb., 17 (1972), 497-514. [8] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc., 10 (1967), 138-183. [9] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. [10] L. Hörmander, A class of hypoelliptic operator with double characteristics, Math. Ann., 217 (1975), 165-188. [11] Y. Kato, On a class of hypoelliptic differential operators, Proc. Japan Acad., 49 (1970), 33-37. [12] H. Kumano-go, Algebras of pseudo-differential operators, J, Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. [13] H. Kumano-go, Pseudo-differential operators, Iwanami Publisher, Tokyo, 1974 (in Japanese). [14] H. Kumano-go, Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem, J. Math. Soc. Japan, 27 (1975), 113-120. [15] H. Kumano-go and K. Taniguchi, Oscillatory integrals of symbols of pseudodifferential operators on Rn and operators of Fredholm type, Proc. Japan Acad., 49 (1973), 397-402. [16] O. A. Oleinik and E. V. Radkevich, Second order equations with non-negative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, 1973. [17] K. Taniguchi, On the hypoellipticity of the operator a(x,Dx)+g(x)b(x,y,Dy), Math. Japon., 20 (1976), 301-320. [18] F. Treves, An invariant criterion of hypoellipticity, Amer. J. Math., 83 (1961), 645-668. [19] C. Tsutsumi, Parametrices for degenerate operators of Grushin's type, (to appear).
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -