Published: 1978 Received: March 02, 1976Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. S Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Amer. J. Math., I, 81 (1959), II, 82 (1960). 2) E. R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933). 3) W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience,1966. 4) M. Oka, On the monodromy of a curve with ordinary double points, Inventiones Math., 27 (1974). 5) M. Oka, On the fundamental group of a reducible curve in P2, J. London Math. Soc. (2), 12 (1976), 239-252. 6) M. Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann., 218 (1975), 55-65. 7) R. Thom, L'Équivalence d'une fonction différentiable et d'un polynome, Topology, 3, 1965. 8) O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929). 9) O. Zariski, Algebraic surfaces, 2nd Edition, Springer, (1971).
Right : [1] S. S Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Amer. J. Math., I, 81 (1959), II, 82 (1960). [2] E. R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933). [3] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, 1966. [4] M. Oka, On the monodromy of a curve with ordinary double points, Inventiones Math., 27 (1974). [5] M. Oka, On the fundamental group of a reducible curve in P2, J. London Math. Soc. (2), 12 (1976), 239-252. [6] M. Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann., 218 (1975), 55-65. [7] R. Thom, L'Équivalence d'une fonction différentiable et d'un polynome, Topology, 3, 1965. [8] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929). [9] O. Zariski, Algebraic surfaces, 2nd Edition, Springer, (1971).
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -