Published: 1979 Received: January 18, 1978Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 241-258. 2) T. Kato, Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan, 25 (1973), 648-666. 3) T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. 4) J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478. 5) E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, 1957. 6) S. Ishii, Linear evolution equation du/dt+A(t)u=0: A case where A(t) is strongly continuous, to appear. 7) F. J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc., 168 (1972), 165-188. 8) K. Yosida, Time dependent evolution equations in a locally convex space, Math. Ann., 162 (1965), 83-86. 9) K. Yosida, Functional analysis, Springer, 1971.
Right : [1] T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 241-258. [2] T. Kato, Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan, 25 (1973), 648-666. [3] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. [4] J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478. [5] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, 1957. [6] S. Ishii, Linear evolution equation du/dt+A(t)u=0: A case where A(t) is strongly continuous, to appear. [7] F. J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc., 168 (1972), 165-188. [8] K. Yosida, Time dependent evolution equations in a locally convex space, Math. Ann., 162 (1965), 83-86. [9] K. Yosida, Functional analysis, Springer, 1971.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -