Published: 1980 Received: July 20, 1978Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S3, Ann. of Math., (2) 68 (1958), 17-37. 2) R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics, vol. 2, Wiley, New York, 1964, 93-128. 3) R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971), 217-231. 4) J. S. Birman and H. M. Hilden, The homeomorphism problem for S3, Bull. Amer. Math. Soc., 79 (1973), 1006-1010. 5) J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of S3, Trans. Amer. Math. Soc., 213 (1975), 315-352. 6) E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., 2 (1966), 1-14. 7) H. S. M. Coxeter, The abstract groups Gm.n.p, Trans. Amer. Math. Soc., 45 (1939), 73-150. 8) H. S. M. Coxeter, The abstract group G3,7,16, Proc. Edinburgh Math. Soc., (2), 13 (1962), 47-61. 9) H. S. M. Coxeter and W. O. Moser, Generators and relations for discrete groups, Springer, Berlin, 1957. 10) J. Hempel, A simply connected 3-manifold is S3 if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964), 154-158. 11) T. Homma, On presentations of fundamental groups of 3-manifolds of genus 2, preprint. 12) E. J. Mayland Jr., A class of two-bridge knots with Property-P, preprint. 13) J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups, and 3-Manifolds (ed. by L.P. Neuwirth), 175-225. 14) M. Ochiai, On geometric reductions of homology 3-spheres of genus two, preprint. 15) H. Poincaré, Second complément a l'analysis situs, Proc. London Math. Soc., (2), 32 (1900), 277-308. 16) H. Poincaré, Cinquieme complément a l'analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45-110. 17) R. Riley, Knots with parabolic property P, Quart. J. Math. Oxford (2), 25 (1974), 273-283. 18) J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc., 35 (1933), 88-111. 19) M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2 (1978), 27-34. 20) R. Osborne, The simplest closed 3-manifolds, Pacific J. Math., 74 (1978), 481-495. 21) M. Takahashi, Two-bridge knots have Property P, preprint.
Right : [1] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S3, Ann. of Math., (2) 68 (1958), 17-37. [2] R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics, vol. 2, Wiley, New York, 1964, 93-128. [3] R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971), 217-231. [4] J. S. Birman and H. M. Hilden, The homeomorphism problem for S3, Bull. Amer. Math. Soc., 79 (1973), 1006-1010. [5] J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of S3, Trans. Amer. Math. Soc., 213 (1975), 315-352. [6] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., 2 (1966), 1-14. [7] H. S. M. Coxeter, The abstract groups Gm,n,p, Trans. Amer. Math. Soc., 45 (1939), 73-150. [8] H. S. M. Coxeter, The abstract group G3,7,16, Proc. Edinburgh Math. Soc., (2), 13 (1962), 47-61. [9] H. S. M. Coxeter and W. O. Moser, Generators and relations for discrete groups, Springer, Berlin, 1957. [10] J. Hempel, A simply connected 3-manifold is S3 if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964), 154-158. [11] T. Homma, On presentations of fundamental groups of 3-manifolds of genus 2, preprint. [12] E. J. Mayland Jr., A class of two-bridge knots with Property-P, preprint. [13] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups, and 3-Manifolds (ed. by L. P. Neuwirth), 175-225. [14] M. Ochiai, On geometric reductions of homology 3-spheres of genus two, preprint. [15] H. Poincaré, Second complément a l'analysis situs, Proc. London Math. Soc., (2), 32 (1900), 277-308. [16] H. Poincaré, Cinquieme complément a l'analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45-110. [17] R. Riley, Knots with parabolic property P, Quart. J. Math. Oxford (2), 25 (1974), 273-283. [18] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc., 35 (1933), 88-111. [19] M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2 (1978), 27-34. [20] R. Osborne, The simplest closed 3-manifolds, Pacific J. Math., 74 (1978), 481-495. [21] M. Takahashi, Two-bridge knots have Property P, preprint.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -