Published: 1981 Received: March 28, 1979Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) E. Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc., 70 (1964), 121-122. 2) T. K. Boehme, M. Rosenfeld and M. L. Weiss, Relations between bounded analytic functions and their boundary functions, J. London Math. Soc., (2) 1 (1969), 609-618. 3) T. K. Boehme and M. L. Weiss, One-sided boundary behavior for certain harmonic functions, Proc. Amer. Math. Soc., 27(2) (1971), 280-288. 4) L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math., (2) 76 (1962), 547-559. 5) J. L. Doob, The boundary values of analytic functions. II, Trans. Amer. Math. Soc., 35 (1933), 418-451. 6) J. L. Doob, One-sided cluster value theorems, Proc. London Math. Soc., (3) 13 (1963), 461-470. 7) T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. 8) W. Gross, Zum Verhalten der konformen Abbildung am Rande, Math. Z., 3 (1919), 43-64. 9) K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. 10) K. Hoffman, Bounded analytic functions and Gleason parts, Ann. Math., 86 (1967), 74-111. 11) C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960. 12) M. Rosenfeld and M. L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc., (2) 2 (1970), 209-215. 13) U. V. Satyanarayana, The distribution of supports of representing measures for H∞, in preparation. 14) U. V. Satyanarayana, Lindelöf-type theorems for bounded harmonic functions, in preparation. 15) M. L. Weiss, Cluster sets of bounded analytic functions from a Banach algebraic viewpoint, Ann. Acad. Sci. Fenn. Ser. A.I., no. 367 (1965), 14pp.
Right : [1] E. Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc., 70 (1964), 121-122. [2] T. K. Boehme, M. Rosenfeld and M. L. Weiss, Relations between bounded analytic functions and their boundary functions, J. London Math. Soc., (2) 1 (1969), 609-618. [3] T. K. Boehme and M. L. Weiss, One-sided boundary behavior for certain harmonic functions, Proc. Amer. Math. Soc., 27(2) (1971), 280-288. [4] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math., (2) 76 (1962), 547-559. [5] J. L. Doob, The boundary values of analytic functions. II, Trans. Amer. Math. Soc., 35 (1933), 418-451. [6] J. L. Doob, One-sided cluster value theorems, Proc. London Math. Soc., (3) 13 (1963), 461-470. [7] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. [8] W. Gross, Zum Verhalten der konformen Abbildung am Rande, Math. Z., 3 (1919), 43-64. [9] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. [10] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. Math., 86 (1967), 74-111. [11] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960. [12] M. Rosenfeld and M. L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc., (2) 2 (1970), 209-215. [13] U. V. Satyanarayana, The distribution of supports of representing measures for H∞, in preparation. [14] U. V. Satyanarayana, Lindelöf-type theorems for bounded harmonic functions, in preparation. [15] M. L. Weiss, Cluster sets of bounded analytic functions from a Banach algebraic viewpoint, Ann. Acad. Sci. Fenn. Ser. A. I., no. 367 (1965), 14pp.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -