Published: 1981 Received: August 21, 1979Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 0) Y. Akizuki and S. Nakano, Notes on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954), 266-272. 1) A. Fujiki and S. Nakano, Supplement to “On the inverse of monoidal transformation”. Publ. Res. Inst. Math. Sci. Kyoto Univ., 7 (1971/72), 637-644. 2) T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115. 3) T. Fujita, Defining equations for certain types of polarized varieties, Complex Analysis and Algebraic Geometry, Tokyo, Iwanami, 1977. 4) T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169. 5) T. Fujita, On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan, 32 (1980), 709-725. 6) T. Fujita, Vector bundles on ample divisors, J. Math. Soc. Japan, 33(1981), 405-414. 7) V.A. Iskovskih, Fano 3-folds, I (translated by M. Reid), Izv. Akad. Nauk SSSR, AMS-translations 11 (1977), 485-527. 8) K. Kodaira, L. Nirenberg and D.C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68 (1958), 450-459. 9) K. Kodaira and D.C. Spencer, On deformations of complex analytic structures III, Stability theorems for complex structures, Ann. of Math., 71 (1960), 43-76. 10) A.T. Lascu and D.B. Scott, An algebraic correspondence with applications to projective bundles and blowing-up Chern classes, Ann. Mat, pura appl., 102 (1975), 1-36. 11) K. Kodaira and J. Morrow, Complex Manifolds, New York, Rinehart and Winston, 1971. 12) S. Nakano, On the inverse of monoidal transformation, Publ. Res. Inst. Math. Sci. Kyoto Univ., 6 (1970/71), 483-502.
Right : [0] Y. Akizuki and S. Nakano, Notes on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954), 266-272. [1] A. Fujiki and S. Nakano, Supplement to “On the inverse of monoidal transformation”. Publ. Res. Inst. Math. Sci. Kyoto Univ., 7 (1971/72), 637-644. [2] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), 103-115. [3] T. Fujita, Defining equations for certain types of polarized varieties, Complex Analysis and Algebraic Geometry, Tokyo, Iwanami, 1977. [4] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169. [5] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan, 32 (1980), 709-725. [6] T. Fujita, Vector bundles on ample divisors, J. Math. Soc. Japan, 33 (1981), 405-414. [7] V. A. Iskovskih, Fano 3-folds, I (translated by M. Reid), Izv. Akad. Nauk SSSR, AMS-translations 11 (1977), 485-527. [8] K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math., 68 (1958), 450-459. [9] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures III, Stability theorems for complex structures, Ann. of Math., 71 (1960), 43-76. [10] A. T. Lascu and D. B. Scott, An algebraic correspondence with applications to projective bundles and blowing-up Chern classes, Ann. Mat, pura appl., 102 (1975), 1-36. [11] K. Kodaira and J. Morrow, Complex Manifolds, New York, Rinehart and Winston, 1971. [12] S. Nakano, On the inverse of monoidal transformation, Publ. Res. Inst. Math. Sci. Kyoto Univ., 6 (1970/71), 483-502.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -