Published: 1981 Received: November 29, 1979Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Right : [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Princeton, 1965. [2] S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rational Mech. Anal., 28 (1968), 165-183. [3] R. Beals, Asymptotic behavior of the Green's function and spectral function of an elliptic operator, J. Functional Analysis, 5 (1970), 484-503. [4] K. Maruo and H. Tanabe, On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms, Osaka J. Math., 8 (1971), 323-345. [5] K. Maruo, Asymptotic distribution of eigenvalues of non-symmetric operators associated with strongly elliptic sesquilinear forms, Osaka J. Math., 9 (1972), 547-560. [6] G. Metivier, Valeurs propres des problemes aux limites elliptiques irreguliers, Bull. Soc. Math. France Mem., 51-52 (1977), 125-219. [7] D. Robert, Sur la repartition du spectre d'operateurs elliptiques non auto-adjoints a coefficients irreguliers, Osaka J. Math., 14 (1977), 593-607. [8] R. T. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3, Advances in Math., 29 (1978), 244-269. [9] H. Tanabe, On Green's functions of elliptic and parabolic boundary values problems, Proc. Japan Acad., 48 (1972), 709-711. [10] H. Tanabe, On remainder estimates in the asymptotic formula of elliptic operators, Proc. Japan Acad., 48 (1972), 377-380. [11] J. Tsujimoto, On the asymptotic behavior of spectral functions of elliptic operators, to appear.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -