Published: 1981 Received: January 30, 1980Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) C. O. Bloom and N. D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. Differential Equation, 16 (1974), 352-372. 2) J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl., 49 (1975), 130-153. 3) J. Cooper and W. A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, Indiana Univ. Math. J., 25 (1976), 671-690. 4) P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967. 5) O. A. Ladyzenskaya, On the principle of limiting amplitude, Uspehi Mat. Nauk, 12 (1957) No. 3(75), 161-164. 6) C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), 439-444. 7) W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), 265-278. 8) H. Tamura, Local energy decays for wave equations with time-dependent coefficients, Nagoya Math. J., 71 (1978), 107-123. 9) H. Tamura, On the decay of the local energy for wave equations with a moving obstacle, Nagoya Math. J., 71 (1978), 125-147. 10) D. Thoe, On the exponential decay of solutions of the wave equation, J. Math. Anal. Appl., 16 (1966), 333-346. 11) C. H. Wilcox, Scattering theory for the d'Alembert equation in exterior domains. Lecture notes in Math., 442, Springer-Verlag, 1975.
Right : [1] C. O. Bloom and N. D. Kazarinoff, Energy decays locally even if total energy grows algebraically with time, J. Differential Equation, 16 (1974), 352-372. [2] J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl., 49 (1975), 130-153. [3] J. Cooper and W. A. Strauss, Energy boundedness and decay of waves reflecting off a moving obstacle, Indiana Univ. Math. J., 25 (1976), 671-690. [4] P. D. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York, 1967. [5] O. A. Ladyzenskaya, On the principle of limiting amplitude, Uspehi Mat. Nauk, 12 (1957) No. 3 (75), 161-164. [6] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), 439-444. [7] W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), 265-278. [8] H. Tamura, Local energy decays for wave equations with time-dependent coefficients, Nagoya Math. J., 71 (1978), 107-123. [9] H. Tamura, On the decay of the local energy for wave equations with a moving obstacle, Nagoya Math. J., 71 (1978), 125-147. [10] D. Thoe, On the exponential decay of solutions of the wave equation, J. Math. Anal. Appl., 16 (1966), 333-346. [11] C. H. Wilcox, Scattering theory for the d'Alembert equation in exterior domains. Lecture notes in Math., 442, Springer-Verlag, 1975.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -