Published: 1982 Received: July 11, 1981Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : [F1] T. Fujita, On the Δ-genera of polarized varieties (in Japanese), Master Thesis, Univ. of Tokyo, 1974. [F2] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 103-115. [F3] T. Fujita, Defining equations for certain types of polarized varieties, Complex analysis and algebraic geometry, 165-173, Iwanami, 1977. [F4] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169. [F5] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan, 32 (1980), 709-725. [Ha 1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer, 1970. [Ha 2] R. Hartshorne, Algebraic geometry, Grad. Text in Math., 52, Springer, 1977. [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I-II, Ann, of Math., 79 (1964), 109-326. [K] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344. [N] Y. Nakai, A criterion of an ample sheaf on a projective scheme, Amer. J. Math., 85 (1963), 14-26.
Right : [F1] T. Fujita, On the Δ-genera of polarized varieties (in Japanese), Master Thesis, Univ. of Tokyo, 1974. [F2] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 103-115. [F3] T. Fujita, Defining equations for certain types of polarized varieties, Complex analysis and algebraic geometry, 165-173, Iwanami, 1977. [F4] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169. [F5] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, J. Math. Soc. Japan, 32 (1980), 709-725. [Ha 1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer, 1970. [Ha 2] R. Hartshorne, Algebraic geometry, Grad. Text in Math., 52, Springer, 1977. [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I-II, Ann. of Math., 79 (1964), 109-326. [K] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344. [N] Y. Nakai, A criterion of an ample sheaf on a projective scheme, Amer. J. Math., 85 (1963), 14-26.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -