Published: 1983 Received: September 14, 1981Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49. 2) E. Bombieri, E. de Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268. 3) Yu. D. Burago and V.A. Zalgaller, Convex sets in Riemannian spaces of non-negative curvature, Uspehi Mat. Nauk, 32 (1977), 3-55; Russian Math. Surveys, 32 (1977), 1-57. 4) J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971), 119-128. 5) J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96 (1972), 413-443. 6) S.-Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289-297. 7) E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup., 11 (1978), 451-470. 8) R. Ichida, Riemannian manifolds with compact boundary, Yokohama Math. J., 29 (1981), 169-177. 9) A. Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, to appear in Japan. J. Math., 8 (1982). 10) S. Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., New Jersey, 1965. 11) H. Wu, An elementary method in the study of nonnegative curvature, Acta Math., 142 (1979), 57-78.
Right : [1] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49. [2] E. Bombieri, E. de Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268. [3] Yu. D. Burago and V.A. Zalgaller, Convex sets in Riemannian spaces of non-negative curvature, Uspehi Mat. Nauk, 32 (1977), 3-55; Russian Math. Surveys, 32 (1977), 1-57. [4] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971), 119-128. [5] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96 (1972), 413-443. [6] S. -Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289-297. [7] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup., 11 (1978), 451-470. [8] R. Ichida, Riemannian manifolds with compact boundary, Yokohama Math. J., 29 (1981), 169-177. [9] A. Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, to appear in Japan. J. Math., 8 (1982). [10] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., New Jersey, 1965. [11] H. Wu, An elementary method in the study of nonnegative curvature, Acta Math., 142 (1979), 57-78.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -