Published: 1983 Received: December 08, 1980Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : Kenro FURUTANI1) Right : Kenrô FURUTANI1)
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Y. Akizuki, The theory of harmonic integrals, Iwanami, Tokyo, 1973. 2) S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147. 3) J.H. Albert, Genericity of simple eigenvalues for elliptic PDE's, Proc. Amer. Math. Soc., 48 (1975), 413-418. 4) H. Chu and S. Kobayashi, The automorphism group of a geometric structure, Trans. Amer. Math. Soc., 113 (1964), 141-150. 5) S.I. Goldberg and T. Ishihara, Riemannian submersions commuting with the Laplacian, J. Differential Geometry, 13 (1978), 139-144. 6) D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. 7) R. Narashimhan, Analysis on real and complex manifolds, North Holland, Amsterdam, 1968. 8) R.S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22 (1957). 9) K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078. 10) B. Watson, Manifold maps commuting with the Laplacians, J. Differential Geometry, 8 (1973), 85-94.
Right : [1] Y. Akizuki, The theory of harmonic integrals, Iwanami, Tokyo, 1973. [2] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147. [3] J. H. Albert, Genericity of simple eigenvalues for elliptic PDE's, Proc. Amer. Math. Soc., 48 (1975), 413-418. [4] H. Chu and S. Kobayashi, The automorphism group of a geometric structure, Trans. Amer. Math. Soc., 113 (1964), 141-150. [5] S. I. Goldberg and T. Ishihara, Riemannian submersions commuting with the Laplacian, J. Differential Geometry, 13 (1978), 139-144. [6] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. [7] R. Narashimhan, Analysis on real and complex manifolds, North Holland, Amsterdam, 1968. [8] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22 (1957). [9] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078. [10] B. Watson, Manifold maps commuting with the Laplacians, J. Differential Geometry, 8 (1973), 85-94.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -