Published: 1984 Received: October 04, 1982Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. Agmon, On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math., 18 (1965), 627-663. 2) S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Israel J. Math., 5 (1968), 165-183. 3) R. Beals, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. 4) M. Sh. Birman, On the spectrum of singular boundary problems, Mat. Sb., 55 (1961), 125-174; English transl., Amer. Math. Soc. Transl., 53 (1966), 23-80. 5) M. Sh. Birman and V. V. Borzov, On the asymptotics of the discrete spectrum of some singular operators, Prob. Math. Phys., 5 (1971), 24-37, Leninglard; English Transl., Topics Math. Phys., 5 (1972), 19-30, Plenum Press. 6) Colin de Verdière, Spectre conjoint d'opérateurs pseudodifférentiels qui commutent I, Duke Math. J., 46 (1979), 169-182. 7) B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et operateurs admissibles, J. Funct. Anal., 53 (1983), 246-268. 8) L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. 9) V. Ya. Ivrii, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Funkts. Anal. i Pril., 14, no. 2 (1980), 25-34; English transl., Funct. Anal. Appl., 14, 99-106. 10) M. Kac, On the asymptotic number of bound states for certain attractive potentials, Topics Funct. Anal., Adv. in Math. Suppl. Studies, 3 (1978), 159-167. 11) H. Kumano-go, A calculus of Fourier integral operator on Rn and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, 1 (1976), 1-44. 12) H. Kumano-go, Pseudo-differential operators, MIT Press, 1980. 13) E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sympos. Pure Math., Amer. Math. Soc., 36 (1980), 241-252. 14) A. Martin, Bound states in the strong coupling limit, Helv. Phys. Acta, 45 (1972), 140-148. 15) R. B. Merlose, Weyl's conjecture for manifolds with concave boundary, Proc. Sympos. Pure Math., Amer. Math. Soc., 36 (1980), 257-274. 16) A. Pleijel, On a theorem of P. Malliavin, Israel J. Math., 1 (1963), 166-168. 17) M. Reed and B. Simon, Analysis of operators, Academic Press, 1979. 18) D. Robert, Propriétés spectrales d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 3 (1978), 755-826. 19) G. V. Rosenbljum, The distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR, 202 (1972), 1012-1015; English transl., Soviet Math. Dokl., 13 (1972), 245-249. 20) J. Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 122-129. 21) R. T. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3, Adv. in Math., 29 (1978), 244-269. 22) H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators, I, J. Analyse Math., 40 (1981), 166-182. 23) H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators, II, J. Analyse Math., 41 (1982), 85-108. 24) F. Treves, Introduction to pseudodifferential and Fourier integral operators, vols. 1 and 2, Plenum Press, 1980.
Right : [1] S. Agmon, On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math., 18 (1965), 627-663. [2] S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Israel J. Math., 5 (1968), 165-183. [3] R. Beals, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. [4] M. Sh. Birman, On the spectrum of singular boundary problems, Mat. Sb., 55 (1961), 125-174; English transl., Amer. Math. Soc. Transl., 53 (1966), 23-80. [5] M. Sh. Birman and V. V. Borzov, On the asymptotics of the discrete spectrum of some singular operators, Prob. Math. Phys., 5 (1971), 24-37, Leninglard; English Transl., Topics Math. Phys., 5 (1972), 19-30, Plenum Press. [6] Colin de Verdière, Spectre conjoint d'opérateurs pseudodifférentiels qui commutent I, Duke Math. J., 46 (1979), 169-182. [7] B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et operateurs admissibles, J. Funct. Anal., 53 (1983), 246-268. [8] L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. [9] V. Ya. Ivrii, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Funkts. Anal. i Pril., 14, no. 2 (1980), 25-34; English transl., Funct. Anal. Appl., 14, 99-106. [10] M. Kac, On the asymptotic number of bound states for certain attractive potentials, Topics Funct. Anal., Adv. in Math. Suppl. Studies, 3 (1978), 159-167. [11] H. Kumano-go, A calculus of Fourier integral operator on Rn and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations, 1 (1976), 1-44. [12] H. Kumano-go, Pseudo-differential operators, MIT Press, 1980. [13] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sympos. Pure Math., Amer. Math. Soc., 36 (1980), 241-252. [14] A. Martin, Bound states in the strong coupling limit, Helv. Phys. Acta, 45 (1972), 140-148. [15] R. B. Merlose, Weyl's conjecture for manifolds with concave boundary, Proc. Sympos. Pure Math., Amer. Math. Soc., 36 (1980), 257-274. [16] A. Pleijel, On a theorem of P. Malliavin, Israel J. Math., 1 (1963), 166-168. [17] M. Reed and B. Simon, Analysis of operators, Academic Press, 1979. [18] D. Robert, Propriétés spectrales d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations, 3 (1978), 755-826. [19] G. V. Rosenbljum, The distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR, 202 (1972), 1012-1015; English transl., Soviet Math. Dokl., 13 (1972), 245-249. [20] J. Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U. S. A., 47 (1961), 122-129. [21] R. T. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3, Adv. in Math., 29 (1978), 244-269. [22] H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators, I, J. Analyse Math., 40 (1981), 166-182. [23] H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators, II, J. Analyse Math., 41 (1982), 85-108. [24] F. Treves, Introduction to pseudodifferential and Fourier integral operators, vols. 1 and 2, Plenum Press, 1980.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -