Published: 1985 Received: December 26, 1983Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Naomi Mitsutsuka on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, 1971. 2) K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tohoku Math. J., 32 (1980), 147-153. 3) H. Mori, Minimal surfaces of revolution in H3 and their global stability, Indiana. Univ. Math. J., 30 (1981), 787-794. 4) H. Mori, Stable complete constant mean curvature surfaces in R3 and H3, Trans. Amer. Math. Soc., 28 (1983), 671-687. 5) K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Diff. Geom., 3 (1969), 367-377. 6) S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tohoku Math. J., 35 (1983), 155-172.
Right : [1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, 1971. [2] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tôhoku Math. J., 32 (1980), 147-153. [3] H. Mori, Minimal surfaces of revolution in H3 and their global stability, Indiana. Univ. Math. J., 30 (1981), 787-794. [4] H. Mori, Stable complete constant mean curvature surfaces in R3 and H3, Trans. Amer. Math. Soc., 28 (1983), 671-687. [5] K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Diff. Geom., 3 (1969), 367-377. [6] S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tohoku Math. J., 35 (1983), 155-172.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -