Published: 1985 Received: May 28, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: AFFILIATIONDetails: Wrong :
1) Ichinoseki Technical College
2) Mathematical Institute Tohoku University
Right :
1) Ichinoseki Technical College
2) Mathematical Institute Tôhoku University
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc., 205 (1975), 341-359. 2) J. Blanton and C. McCrory, An axiomatic proof of Stiefel's conjecture, Proc. Amer. Math. Soc., 77 (1979), 409-414. 3) J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, Topology of Manifolds, Markham Publ., Chicago, 1971, 470-471. 4) W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., 243 (1981). 5) R. Goldstein, A Wu formula for Euler mod 2 spaces, Compositio Math., 32 (1976), 33-39. 6) S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math., 96 (1972), 511-525. 7) S. Halperin and D. Toledo, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc., 48 (1975), 239-244. 8) A. Matsui, Stiefel-Whitney homology classes of Z2-Poincaré-Euler spaces, Tohoku Math. J., 35 (1983), 321-339. 9) D. Sullivan, Combinatorial invariants of analytic spaces, Proc. Liverpool Singularities I, Lecture Notes in Math., 192, Springer, 1971, 165-168. 10) L. Taylor, Stiefel-Whitney homology classes, Quart. J. Oxford, 28(1977), 381-387. 11) D. Veljan, Axioms for Stiefel-Whitney homology classes of some singular spaces, Trans. Amer. Math. Soc., 277 (1983), 285-305.
Right : [1] E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc., 205 (1975), 341-359. [2] J. Blanton and C. McCrory, An axiomatic proof of Stiefel's conjecture, Proc. Amer. Math. Soc., 77 (1979), 409-414. [3] J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, Topology of Manifolds, Markham Publ., Chicago, 1971, 470-471. [4] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., 243 (1981). [5] R. Goldstein, A Wu formula for Euler mod 2 spaces, Compositio Math., 32 (1976), 33-39. [6] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math., 96 (1972), 511-525. [7] S. Halperin and D. Toledo, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc., 48 (1975), 239-244. [8] A. Matsui, Stiefel-Whitney homology classes of Z2-Poincaré-Euler spaces, Tôhoku Math. J., 35 (1983), 321-339. [9] D. Sullivan, Combinatorial invariants of analytic spaces, Proc. Liverpool Singularities I, Lecture Notes in Math., 192, Springer, 1971, 165-168. [10] L. Taylor, Stiefel-Whitney homology classes, Quart. J. Oxford, 28(1977), 381-387. [11] D. Veljan, Axioms for Stiefel-Whitney homology classes of some singular spaces, Trans. Amer. Math. Soc., 277 (1983), 285-305.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -