Published: 1985 Received: January 17, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. S. Agayan and A. G. Sarukhanyan, Recurrence formulas for the construction of Williamson-type matrices, Math. Notes, 30 (1982), 796-804. 2) H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math., 172 (1935), 151-182. 3) A. V. Geramita and J. Seberry, Orthogonal Designs : Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Math., 45, Marcel Dekker, New York and Basel, 1979. 4) Z. Kiyasu, Hadamard matrix and its applications, Denshi-Tsushin Gakkai, Tokyo, 1980, (in Japanese). 5) S. Lang, Cyclotomic Fields, Springer-Verlag, New York. Heidelberg-Berlin, 1978. 6) K. Sawade, Hadamard matrices of order 100 and 108, Bull. Nagoya Inst. Technology, 29 (1977), 147-153. 7) T. Storer, Cyclotomy and Difference Sets, Markham Publishing Company, Chicago, 1967. 8) R. J. Turyn, An infinite class of Williamson matrices, J. Combinatorial Theory Ser. A, 12 (1972), 319-321. 9) W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Math., 292, Springer-Verlag, 1972. 10) A. L. Whiteman, An infinite family of Hadamard matrices of Williamson type, J. Combinatorial Theory Ser. A, 14 (1973), 334-340. 11) M. Yamada, On Gauss sums in a finite field and their applications to Hadamard matrices, Reports of symposium on algebraic number theory held at University of Tokyo, Oct. 17-19, 1983, 9-30, (in Japanese). 12) K. Yamamoto, A generalized Williamson equation, Colloq. Math. Soc. János Bolyai, 37 (1983), 839-850.
Right : [1] S. S. Agayan and A. G. Sarukhanyan, Recurrence formulas for the construction of Williamson-type matrices, Math. Notes, 30 (1982), 796-804. [2] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math., 172 (1935), 151-182. [3] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Math., 45, Marcel Dekker, New York and Basel, 1979. [4] Z. Kiyasu, Hadamard matrix and its applications, Denshi-Tsushin Gakkai, Tokyo, 1980, (in Japanese). [5] S. Lang, Cyclotomic Fields, Springer-Verlag, New York-Heidelberg-Berlin, 1978. [6] K. Sawade, Hadamard matrices of order 100 and 108, Bull. Nagoya Inst. Technology, 29 (1977), 147-153. [7] T. Storer, Cyclotomy and Difference Sets, Markham Publishing Company, Chicago, 1967. [8] R. J. Turyn, An infinite class of Williamson matrices, J. Combinatorial Theory Ser. A, 12 (1972), 319-321. [9] W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in Math., 292, Springer-Verlag, 1972. [10] A. L. Whiteman, An infinite family of Hadamard matrices of Williamson type, J. Combinatorial Theory Ser. A, 14 (1973), 334-340. [11] M. Yamada, On Gauss sums in a finite field and their applications to Hadamard matrices, Reports of symposium on algebraic number theory held at University of Tokyo, Oct. 17-19, 1983, 9-30, (in Japanese). [12] K. Yamamoto, A generalized Williamson equation, Colloq. Math. Soc. János Bolyai, 37 (1983), 839-850.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -