Published: 1986 Received: May 18, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin-Heidelberg -New York, 1976. 2) G. Bourdaud, Lp-estimates for certain non-regular pseudo-differential operators, Comm. Partial Differential Equations, 7 (1982), 1023-1033. 3) A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, I, Adv. in Math., 16(1975), 1-64; II, Adv. in Math., 24 (1977), 101-171. 4) R. R. Coifman et Y. Meyer, Au-délà des opérateurs pseudo-différentiels, Astèrisque, 57, Soc. Math. France, Paris, 1978. 5) E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. 6) R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. (New Series), 4 (1981), 195-201. 7) R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143. 8) S. Mossaheb et M. Okada, Une classe d'opérateurs pseudo-différentiels bornés sur Lr(Rn), 1<r<∞, C. R. Acad. Sci. Paris, 285 (1977), 613-616. 9) T. Muramatu and M. Nagase, On sufficient conditions for the boundedness of pseudo-differential operators, Proc. Japan Acad. Ser. A, 55 (1979), 293-296. 10) M. Nagase, The Lp-boundedness of pseudo-differential operators with non-regular symbols, Comm. Partial Differential Equations, 2 (1977), 1045-1061. 11) E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. 12) H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York-Oxford, 1978. 13) M. Yamazaki, Continuité des opérateurs pseudo-différentiels et para-différentiels dans les espaces de Besov et les espaces de Triebel-Lizorkin non-isotropes, C. R. Acad. Sci. Paris Sér. I, 296 (1983), 533-536. 14) M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I, II, to appear in J. Fac. Sci. Univ. Tokyo. 15) M. Yamazaki, The Lp-boundedness of pseudo-differential operators satisfying estimates of parabolic type and product type, Proc. Japan Acad. Ser. A, 60 (1984), 279-282.
Right : [1] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin-Heidelberg -New York, 1976. [2] G. Bourdaud, Lp-estimates for certain non-regular pseudo-differential operators, Comm. Partial Differential Equations, 7 (1982), 1023-1033. [3] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, I, Adv. in Math., 16 (1975), 1-64; II, Adv. in Math., 24 (1977), 101-171. [4] R. R. Coifman et Y. Meyer, Au-délà des opérateurs pseudo-différentiels, Astèrisque, 57, Soc. Math. France, Paris, 1978. [5] E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. [6] R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. (New Series), 4 (1981), 195-201. [7] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143. [8] S. Mossaheb et M. Okada, Une classe d'opérateurs pseudo-différentiels bornés sur Lr(Rn), 1<r<∞, C. R. Acad. Sci. Paris, 285 (1977), 613-616. [9] T. Muramatu and M. Nagase, On sufficient conditions for the boundedness of pseudo-differential operators, Proc. Japan Acad. Ser. A, 55 (1979), 293-296. [10] M. Nagase, The Lp-boundedness of pseudo-differential operators with non-regular symbols, Comm. Partial Differential Equations, 2 (1977), 1045-1061. [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. [12] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York-Oxford, 1978. [13] M. Yamazaki, Continuité des opérateurs pseudo-différentiels et para-différentiels dans les espaces de Besov et les espaces de Triebel-Lizorkin non-isotropes, C. R. Acad. Sci. Paris Sér. I, 296 (1983), 533-536. [14] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I, II, to appear in J. Fac. Sci. Univ. Tokyo. [15] M. Yamazaki, The Lp-boundedness of pseudo-differential operators satisfying estimates of parabolic type and product type, Proc. Japan Acad. Ser. A, 60 (1984), 279-282.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -