Published: 1986 Received: May 10, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) X. Benveniste, Sur les applications pluricanoniques des variétés de type très général en dimension 3, preprint (1984). 2) X. Benveniste, Variétés de dimension 3 de type général tel que système linéaire défini par un multiple du diviseur canonique soit sans point base, Note aux C. R. Acad. Sci. Paris Sér A, 289 (1979). 3) E. Bombieri, The pluricanonical map of a complex surface, Several complex variables I, Lecture Notes in Math., 155, Springer, 1970, 35-87. 4) R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 156, Springer, 1970. 5) H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. 6) S. Iitaka, Algebraic Geometry, An Introduction to Birational Geometry of Algebraic Varieties, Graduate Texts in Math., 76, Springer, 1981. 7) Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46. 8) Y. Kawamata, Cone of curves of algebraic varieties, Ann. of Math., 119 (1984), 603-633. 9) Y. Miyaoka, The pseudo-effectivity of 3c2-c21 for varieties with numericallyeffective canonical classes, preprint (1984). 10) C. P. Ramanujam, Supplement to the article “Remarks on the Kodaira vanishing theorem”. J. Indian Math. Soc., 38 (1974), 121-124. 11) M. Reid, Canonical 3-folds, Journée de Géométrie Algébrique d'Anger 1979 (ed. A. Beauville), Sijthoff & Noordhoff, 1980, 273-310. 12) M. Reid, Projective morphisms according to Kawamata, preprint, Warwick University (1983). 13) S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798-1799.
Right : [1] X. Benveniste, Sur les applications pluricanoniques des variétés de type très général en dimension 3, preprint (1984). [2] X. Benveniste, Variétés de dimension 3 de type général tel que système linéaire défini par un multiple du diviseur canonique soit sans point base, Note aux C. R. Acad. Sci. Paris Sér A, 289 (1979). [3] E. Bombieri, The pluricanonical map of a complex surface, Several complex variables I, Lecture Notes in Math., 155, Springer, 1970, 35-87. [4] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 156, Springer, 1970. [5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. [6] S. Iitaka, Algebraic Geometry, An Introduction to Birational Geometry of Algebraic Varieties, Graduate Texts in Math., 76, Springer, 1981. [7] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46. [8] Y. Kawamata, Cone of curves of algebraic varieties, Ann. of Math., 119 (1984), 603-633. [9] Y. Miyaoka, The pseudo-effectivity of 3c2-c21 for varieties with numericallyeffective canonical classes, preprint (1984). [10] C. P. Ramanujam, Supplement to the article “Remarks on the Kodaira vanishing theorem”. J. Indian Math. Soc., 38 (1974), 121-124. [11] M. Reid, Canonical 3-folds, Journée de Géométrie Algébrique d'Anger 1979 (ed. A. Beauville), Sijthoff & Noordhoff, 1980, 273-310. [12] M. Reid, Projective morphisms according to Kawamata, preprint, Warwick University (1983). [13] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798-1799.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -