Published: 1986 Received: June 29, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor A. Granas
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fixes et coïncidences pour les applications multivoques (applications de Ky Fan), C. R. Acad. Sci. Paris, 295 (1982), 337-340. 2) H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fixes et coïncidences pour les fonctions multivoques II. (Applications de type φ et φ*), C. R. Acad. Sci. Paris, 295 (1982), 381-384. 3) F. E. Browder, The fixed-point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. 4) F. E. Browder, Coincidence theorems, minimax theorems and variational inequalities, Contemporary Math., 26(1984), 67-80. 5) K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234-240. 6) K. Fan, A minimax inequality and applications, Inequalities III, Academic Press, 1972, pp. 103-113. 7) K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann., 266 (1984), 519-537. 8) A. Granas and F-C Liu, Théorèmes du minimax, C. R. Acad. Sci. Paris, 298 (1984), 329-332. 9) F-C Liu, A note on the von Neumann - Sion minimax principle, Bull. Inst. Math. Acad. Sinica, 6 (1978), 517-524. 10) S. Simons, Minimax and variational inequalities, are they of fixed-point or Hahn-Banach type?, Game Theory and Mathematical Economics, North-Holland, Amsterdam, 1981, pp. 379-387. 11) S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems, to appear in the proceedings of the 1983 AMS Summer Institute on Nonlinear Functional Analysis and Applications. 12) W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan, 28(1976), 168-181. 13) W. Takahashi, Recent results in fixed point theory, Southeast Asian Bull. Math., 4 (1980), 59-85.
Right : [1] H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fixes et coïncidences pour les applications multivoques (applications de Ky Fan), C. R. Acad. Sci. Paris, 295 (1982), 337-340. [2] H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fixes et coïncidences pour les fonctions multivoques II. (Applications de type ∅ et ∅*), C. R. Acad. Sci. Paris, 295 (1982), 381-384. [3] F. E. Browder, The fixed-point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. [4] F. E. Browder, Coincidence theorems, minimax theorems and variational inequalities, Contemporary Math., 26 (1984), 67-80. [5] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234-240. [6] K. Fan, A minimax inequality and applications, Inequalities III, Academic Press, 1972, pp. 103-113. [7] K. Fan, Some properties of convex sets related to fixed point theorem, Math. Ann., 266 (1984), 519-537. [8] A. Granas and F-C Liu, Théorèmes du minimax, C. R. Acad. Sci. Paris, 298 (1984), 329-332. [9] F-C Liu, A note on the von Neumann - Sion minimax principle, Bull. Inst. Math. Acad. Sinica, 6 (1978), 517-524. [10] S. Simons, Minimax and variational inequalities, are they of fixed-point or Hahn-Banach type?, Game Theory and Mathematical Economics, North-Holland, Amsterdam, 1981, pp. 379-387. [11] S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems, to appear in the proceedings of the 1983 AMS Summer Institute on Nonlinear Functional Analysis and Applications. [12] W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan, 28 (1976), 168-181. [13] W. Takahashi, Recent results in fixed point theory, Southeast Asian Bull. Math., 4 (1980), 59-85.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -