Published: 1986 Received: September 28, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. 2) C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluid using Hölder estimates, Turbulence and Navier-Stokes Equation, Lecture Notes in Math., 565, Springer, 1976, pp. 1-13. 3) O. V. Besov, V. P. II'in and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Vol. II, Winston-Wiley, 1979. 4) J. P. Bourguignon and H. Brézis, Remark on the Euler equation, J. Funct. Anal., 15 (1974), 341-363. 5) M. Cantor, Perfect fluid flows over Rn with asymptotic conditions, J. Funct. Anal., 18 (1975), 73-84. 6) M. Cantor, Spaces of functions with asymptotic conditions on Rn, Indiana Univ. Math. J., 24 (1975), 897-902. 7) M. Cantor, Boundary value problems for asymptotically homogeneous elliptic second order operators, J. Differential Equations, 34 (1979), 102-113. 8) D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-153. 9) C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa Ser. 4, 5 (1978), 29-63. 10) D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700. 11) N. M. Günter, Potential Theory and its Applications to Basic Problems of Mathematical Physics, Frederick Unger Publ., 1967. 12) S. Ito, The existence and the uniqueness of regular solution of non-stationary Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 9 (1961), 103-140. 13) V. Judovic, Two-dimensional nonstationary problem of the flow of an ideal incompressible fluid through a given region, Mat. Sb. (N. S.), 64 (1964), 562-588 (Russian) =Amer. Math. Soc. Transl. (2), 57 (1966), 277-304. 14) T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rat. Mech. Anal., 25 (1967), 188-200. 15) T. Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Funct. Anal., 9 (1972), 296-305. 16) T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal., 56 (1984), 15-28. 17) K. Kikuchi, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 63-92. 18) C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss., 130, Springer, 1966. 19) L. Nirenberg and H. Walker, The null spaces of elliptic partial differential operator in Rn, J. Math. Anal. Appl., 42 (1973), 271-301. 20) H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc., 157 (1971), 373-397. 21) H. S. G. Swann, The existence and uniqueness of nonstationary ideal incompressible flow in bounded domains in R3, Trans. Amer. Math. Soc., 179 (1973), 167-180. 22) R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), 32-43.
Right : [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. [2] C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluid using Hölder estimates, Turbulence and Navier-Stokes Equation, Lecture Notes in Math., 565, Springer, 1976, pp. 1-13. [3] O. V. Besov, V. P. II'in and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Vol. II, Winston-Wiley, 1979. [4] J. P. Bourguignon and H. Brézis, Remark on the Euler equation, J. Funct. Anal., 15 (1974), 341-363. [5] M. Cantor, Perfect fluid flows over Rn with asymptotic conditions, J. Funct. Anal., 18 (1975), 73-84. [6] M. Cantor, Spaces of functions with asymptotic conditions on Rn, Indiana Univ. Math. J., 24 (1975), 897-902. [7] M. Cantor, Boundary value problems for asymptotically homogeneous elliptic second order operators, J. Differential Equations, 34 (1979), 102-113. [8] D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-153. [9] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa Ser. 4, 5 (1978), 29-63. [10] D. Fujiwara and H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700. [11] N. M. Günter, Potential Theory and its Applications to Basic Problems of Mathematical Physics, Frederick Unger Publ., 1967. [12] S. Itô, The existence and the uniqueness of regular solution of non-stationary Navier-Stokes equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 9 (1961), 103-140. [13] V. Judovic, Two-dimensional nonstationary problem of the flow of an ideal incompressible fluid through a given region, Mat. Sb. (N. S.), 64 (1964), 562-588 (Russian) = Amer. Math. Soc. Transl. (2), 57 (1966), 277-304. [14] T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rat. Mech. Anal., 25 (1967), 188-200. [15] T. Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Funct. Anal., 9 (1972), 296-305. [16] T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal., 56 (1984), 15-28. [17] K. Kikuchi, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983), 63-92. [18] C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss., 130, Springer, 1966. [19] L. Nirenberg and H. Walker, The null spaces of elliptic partial differential operator in Rn, J. Math. Anal. Appl., 42 (1973), 271-301. [20] H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc., 157 (1971), 373-397. [21] H. S. G. Swann, The existence and uniqueness of nonstationary ideal incompressible flow in bounded domains in R3, Trans. Amer. Math. Soc., 179 (1973), 167-180. [22] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), 32-43.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -