Published: 1986 Received: October 05, 1984Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. Davis, Computability and Unsolvability, McGraw-Hill, New York, 1958. 2) G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Math. Ann., 119 (1943), 140-161. 3) J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math., 113 (1981), 267-314. 4) A. Kino, On provably recursive functions and ordinal recursive functions, J. Math. Soc. Japan, 20 (1968), 456-476. 5) S. C. Kleene, Introduction to Metamathematics, Van Nostrand, New York, 1952. 6) G. Kreisel, On the interpretation of non-finitist proofs, J. Symbolic Logic, 16 (1951), 241-267 and 17 (1952), 43-58. 7) J. D. Monk, Mathematical Logic, Springer, New York-Heidelberg-Berlin, 1976. 8) J. Paris, Some independence results for Peano arithmetic, J. Symbolic Logic, 43 (1978), 725-731. 9) J. Paris, A hierarchy of cuts in models of arithmetic, Lecture Notes in Math., 834, Springer, 1981, pp.312-337. 10) J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 1133-1142. 11) J. Paris and L. Kirby, ∑n-collection schemas in arithmetic, Logic Colloquium 77, North-Holland, Amsterdam, 1978, pp. 199-209. 12) C. Parsons, Ordinal recursion in partial systems of number theory, Notices Amer. Math. Soc., 13 (1966), 857-858. 13) C. Parsons, On a number theoretic choice schema and its relation to induction, Intuitionism and Proof Theory, North-Holland, Amsterdam and London, 1970, pp. 459-473. 14) K. Shirai, A relation between transfinite induction and mathematical induction in elementary number theory, Tsukuba J. Math., 1 (1977), 91-124. 15) G. Takeuti, Proof Theory, North-Holland, Amsterdam, 1975. 16) S. S. Wainer, A classification of the ordinal recursive functions, Arch. Math. Logik Grundlag., 13 (1970), 61-74. 17) S. S. Wainer, Ordinal recursion and a refinement of the extended Grzegorczyk hierarchy, J. Symbolic Logic, 37 (1972), 281-292.
Right : [1] M. Davis, Computability and Unsolvability, McGraw-Hill, New York, 1958. [2] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Math. Ann., 119 (1943), 140-161. [3] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math., 113 (1981), 267-314. [4] A. Kino, On provably recursive functions and ordinal recursive functions, J. Math. Soc. Japan, 20 (1968), 456-476. [5] S. C. Kleene, Introduction to Metamathematics, Van Nostrand, New York, 1952. [6] G. Kreisel, On the interpretation of non-finitist proofs, J. Symbolic Logic, 16 (1951), 241-267 and 17 (1952), 43-58. [7] J. D. Monk, Mathematical Logic, Springer, New York-Heidelberg-Berlin, 1976. [8] J. Paris, Some independence results for Peano arithmetic, J. Symbolic Logic, 43 (1978), 725-731. [9] J. Paris, A hierarchy of cuts in models of arithmetic, Lecture Notes in Math., 834, Springer, 1981, pp.312-337. [10] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 1133-1142. [11] J. Paris and L. Kirby, ∑n-collection schemas in arithmetic, Logic Colloquium 77, North-Holland, Amsterdam, 1978, pp. 199-209. [12] C. Parsons, Ordinal recursion in partial systems of number theory, Notices Amer. Math. Soc., 13 (1966), 857-858. [13] C. Parsons, On a number theoretic choice schema and its relation to induction, Intuitionism and Proof Theory, North-Holland, Amsterdam and London, 1970, pp. 459-473. [14] K. Shirai, A relation between transfinite induction and mathematical induction in elementary number theory, Tsukuba J. Math., 1 (1977), 91-124. [15] G. Takeuti, Proof Theory, North-Holland, Amsterdam, 1975. [16] S. S. Wainer, A classification of the ordinal recursive functions, Arch. Math. Logik Grundlag., 13 (1970), 61-74. [17] S. S. Wainer, Ordinal recursion and a refinement of the extended Grzegorczyk hierarchy, J. Symbolic Logic, 37 (1972), 281-292.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -