Published: 1987 Received: March 29, 1985Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Itiro Tamura on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. Epstein, Periodic flows on three manifolds, Ann. of Math., 95 (1976), 68-82. 2) D. Epstein, A topology for the space of foliations, Geometry and Topology, Lecture Notes in Math., 597, Springer, 1976, pp. 132-150. 3) K. Fukui, Perturbations of compact foliations, Proc. Japan Acad. Ser. A, 58 (1982), 341-344. 4) F. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math., 89 (1967), 133-148. 5) M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, Academic Press, 1971, pp. 135-155. 6) R. Langevin and H. Rosenberg, On stability of compact leaves and fibrations, Topology, 16 (1977), 107-112. 7) R. Langevin and H. Rosenberg, Integral perturbations of fibrations and a theorem of Seifert, Differential Topology, Foliations and Gelfand-Fuks Cohomology, Lecture Notes in Math., 652, Springer, 1978, pp. 122-127. 8) J. Plante, Stability of codimension one foliations by compact leaves, Topology, 22 (1983), 173-177. 9) G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., 1183, Hermann, Paris, 1952. 10) I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9 (1957), 464-492. 11) H. Seifert, Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. Amer. Math. Soc., 1 (1950), 287-302. 12) D. Stowe, The stationary set of a group action, Proc. Amer. Math. Soc., 79 (1980), 139-146, 13) W, Thurston, A generalization of the Reeb stability theorem, Topology, 13 (1974), 347-352.
Right : [1] D. Epstein, Periodic flows on three manifolds, Ann. of Math., 95 (1976), 68-82. [2] D. Epstein, A topology for the space of foliations, Geometry and Topology, Lecture Notes in Math., 597, Springer, 1976, pp. 132-150. [3] K. Fukui, Perturbations of compact foliations, Proc. Japan Acad. Ser. A, 58 (1982), 341-344. [4] F. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math., 89 (1967), 133-148. [5] M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, Academic Press, 1971, pp. 135-155. [6] R. Langevin and H. Rosenberg, On stability of compact leaves and fibrations, Topology, 16 (1977), 107-112. [7] R. Langevin and H. Rosenberg, Integral perturbations of fibrations and a theorem of Seifert, Differential Topology, Foliations and Gelfand-Fuks Cohomology, Lecture Notes in Math., 652, Springer, 1978, pp. 122-127. [8] J. Plante, Stability of codimension one foliations by compact leaves, Topology, 22 (1983), 173-177. [9] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., 1183, Hermann, Paris, 1952. [10] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9 (1957), 464-492. [11] H. Seifert, Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. Amer. Math. Soc., 1 (1950), 287-302. [12] D. Stowe, The stationary set of a group action, Proc. Amer. Math. Soc., 79 (1980), 139-146, [13] W. Thurston, A generalization of the Reeb stability theorem, Topology, 13 (1974), 347-352.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -