Published: 1988 Received: June 12, 1986Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Hirosi Toda on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632. 2) J. F. Adams, On the groups J(X)-IV, Topology, 5 (1966), 21-71. 3) M. Fujii, K0-groups of projective spaces, Osaka J. Math., 4 (1967), 141-149. 4) K. Iriye, On the James number of cyclic maps of spheres, Japan. J. Math., 10 (1984), 1-8. 5) I. M. James, The topology of Stiefel manifolds, London Math. Soc., Lecture Note, 24, Cambridge Univ., 1976. 6) I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech., 12 (1963), 771-776. 7) D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78 (1972), 981-987. 8) T. Kambe, The structure of KΛ-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146. 9) T. Kobayashi, Non-immersion theorems for lens spaces. II, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 285-292. 10) K. Y. Lam, KO-equivalences and existence of nonsingular bilinear maps, Pacific J. Math., 82 (1979), 145-154. 11) M. Mimura, J. Mukai and G. Nishida, Representing elements of stable homotopy groups by symmetric maps, Osaka J. Math., 11(1974), 105-111. 12) J. Mukai, A characterization of the Kahn-Priddy map, Advanced Studies in Pure Math., 9 (1986), 287-291. 13) J. Mukai, On the stable homotopy of the real projective space of even low dimension, Publ. RIMS, Kyoto Univ., 22 (1986), 81-95. 14) G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan, 25 (1973), 707-732. 15) G. Nishida, On the algebraic K-group of lens spaces and its applications, J. Math. Kyoto Univ., 23 (1983), 211-217. 16) H. Toda, Order of the identity class of a suspension space, Ann. of Math., 78 (1963), 300-325. 17) H. Toda, On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142. 18) H. Toda, On iterated suspensions II, J. Math. Kyoto Univ., 5 (1966), 209-250. 19) J. Ucci, On cyclic and iterated cyclic products of spheres, Osaka J. Math., 8 (1971), 393-404.
Right : [1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632. [2] J. F. Adams, On the groups J(X)-IV, Topology, 5 (1966), 21-71. [3] M. Fujii, K0-groups of projective spaces, Osaka J. Math., 4 (1967), 141-149. [4] K. Iriye, On the James number of cyclic maps of spheres, Japan. J. Math., 10 (1984), 1-8. [5] I. M. James, The topology of Stiefel manifolds, London Math. Soc., Lecture Note, 24, Cambridge Univ., 1976. [6] I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech., 12 (1963), 771-776. [7] D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78 (1972), 981-987. [8] T. Kambe, The structure of KΛ-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146. [9] T. Kobayashi, Non-immersion theorems for lens spaces. II, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 285-292. [10] K. Y. Lam, KO-equivalences and existence of nonsingular bilinear maps, Pacific J. Math., 82 (1979), 145-154. [11] M. Mimura, J. Mukai and G. Nishida, Representing elements of stable homotopy groups by symmetric maps, Osaka J. Math., 11 (1974), 105-111. [12] J. Mukai, A characterization of the Kahn-Priddy map, Advanced Studies in Pure Math., 9 (1986), 287-291. [13] J. Mukai, On the stable homotopy of the real projective space of even low dimension, Publ. RIMS, Kyoto Univ., 22 (1986), 81-95. [14] G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan, 25 (1973), 707-732. [15] G. Nishida, On the algebraic K-group of lens spaces and its applications, J. Math. Kyoto Univ., 23 (1983), 211-217. [16] H. Toda, Order of the identity class of a suspension space, Ann. of Math., 78 (1963), 300-325. [17] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142. [18] H. Toda, On iterated suspensions II, J. Math. Kyoto Univ., 5 (1966), 209-250. [19] J. Ucci, On cyclic and iterated cyclic products of spheres, Osaka J. Math., 8 (1971), 393-404.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -