Published: 1988 Received: December 17, 1986Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Nagayoshi Iwahori on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) T. Beth, Some remarks on D. R. Hughes' construction of M12 and its associated designs, in “Finite geometries and designs”. London Math. Soc., Lecture Note, 49, Cambridge Univ. Press, London, 1981, pp. 22-30. 2) P. J. Cameron, Parallelisms of complete designs, London Math. Soc., Lecture Note, 23, Cambridge Univ. Press, London, 1976. 3) R. D. Carmichael, Introduction to the theory of groups of finite order, Ginn, Boston, 1937. (Reprint, Dover, New York, 1956.) 4) J. H. Conway, Three lectures on exceptional groups, in “Finite simple groups” (G. Higman and M. B. Powell, eds.), Academic Press, London-New York, 1971, pp. 215-247. 5) R. T. Curtis, A new combinatorial approach to M24, Math. Proc. Cambridge Philos. Soc., 79(1976), 25-42. 6) R. T. Curtis, The Steiner system S(5, 6,12), the Mathieu group M12 and the “Kitten”. in “Computational group theory” (M. D. Atkinson ed.), Academic Press, London-New York, 1984, pp. 353-358. 7) D. R. Hughes and F. C. Piper, Design theory, Cambridge Univ. Press, London, 1985. 8) B. Huppert, Endliche Gruppen I, Springer, 1967. 9) R. N. Lane, t-designs and t-ply homogeneous groups, J. Combin. Theory, 10 (1971), 106-118. 10) J. A. Todd, A representation of the Mathieu group M24 as a collineation group, Ann. Mat. Pura. Appl., 71 (1966), 199-238. 11) T. Tsuzuku, Finite groups and finite geometries, Cambridge Univ. Press, London, 1982. 12) E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 256-264. 13) E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg, 265-275.
Right : [1] T. Beth, Some remarks on D. R. Hughes' construction of M12 and its associated designs, in “Finite geometries and designs”. London Math. Soc., Lecture Note, 49, Cambridge Univ. Press, London, 1981, pp. 22-30. [2] P. J. Cameron, Parallelisms of complete designs, London Math. Soc., Lecture Note, 23, Cambridge Univ. Press, London, 1976. [3] R. D. Carmichael, Introduction to the theory of groups of finite order, Ginn, Boston, 1937. (Reprint, Dover, New York, 1956.) [4] J. H. Conway, Three lectures on exceptional groups, in “Finite simple groups” (G. Higman and M. B. Powell, eds.), Academic Press, London-New York, 1971, pp. 215-247. [5] R. T. Curtis, A new combinatorial approach to M24, Math. Proc. Cambridge Philos. Soc., 79(1976), 25-42. [6] R. T. Curtis, The Steiner system S (5, 6,12), the Mathieu group M12 and the “Kitten”. in “Computational group theory” (M. D. Atkinson ed.), Academic Press, London-New York, 1984, pp. 353-358. [7] D. R. Hughes and F. C. Piper, Design theory, Cambridge Univ. Press, London, 1985. [8] B. Huppert, Endliche Gruppen I, Springer, 1967. [9] R. N. Lane, t-designs and t-ply homogeneous groups, J. Combin. Theory, 10 (1971), 106-118. [10] J. A. Todd, A representation of the Mathieu group M24 as a collineation group, Ann. Mat. Pura. Appl., 71 (1966), 199-238. [11] T. Tsuzuku, Finite groups and finite geometries, Cambridge Univ. Press, London, 1982. [12] E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 256-264. [13] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg, 265-275.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -