Published: 1988 Received: September 11, 1985Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Maximal toral action on aspherical manifolds Γ_??_G/K and G/H Right : Maximal toral action on aspherical manifolds Γ_??_G/K and G/H
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) L. Auslander, An exposition of the structure of solvmanifolds, Part I; Algebraic theory, Bull. Amer. Math. Soc., 79 (1973), 227-261. 2) L. Auslander and R. H. Szczarba, Vector bundles over tori and non-compact solvmanifolds, Amer. J. Math., 97 (1975), 260-281. 3) N. Bourbaki, Groupes et algebres de Lie, Chap. 1, 2 et 3, Herman, Paris, 1968. 4) P. E. Conner and F. Raymond, Actions of comapct Lie groups on aspherical manifolds, Topology of manifolds, Proc. Inst. Univ. of Geogia, Athens, 1970, pp. 227-264. 5) P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85. 6) V. V. Gorbatsevich, Three dimensional homogeneous spaces, Sibirsk Mat. Zh., 18 (1977), 280-293; English Transl, in Siberian Math. J., 18 (1977). 7) V. V. Gorbatsevich, The classification of four dimensional compact homogeneous spaces, Uspekhi Mat. Nauk, 32 (1977), no. 2, (1984), 207-208, (Russian). 8) V. V. Gorbatsevich, On aspherical homogeneous spaces, Mat. Sb., 100 (1974), 248-265, (Russian). 9) S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. 10) K. B. Lee and F. Raymond, Geometric realization of group extension by the Seifert construction, Contemp. Math., 36 (1985), 367-425. 11) M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972. 12) F. Raymond and T. Vasques, 3-manifolds whose universal covering are Lie groups, Topology Appl., 12 (1981), 161-179. 13) O. Loos, Symmetric spaces I, Benjamin, New York, 1969.
Right : [1] L. Auslander, An exposition of the structure of solvmanifolds, Part I; Algebraic theory, Bull. Amer. Math. Soc., 79 (1973), 227-261. [2] L. Auslander and R. H. Szczarba, Vector bundles over tori and non-compact solvmanifolds, Amer. J. Math., 97 (1975), 260-281. [3] N. Bourbaki, Groupes et algebres de Lie, Chap. 1, 2 et 3, Herman, Paris, 1968. [4] P. E. Conner and F. Raymond, Actions of comapct Lie groups on aspherical manifolds, Topology of manifolds, Proc. Inst. Univ. of Geogia, Athens, 1970, pp. 227-264. [5] P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85. [6] V. V. Gorbatsevich, Three dimensional homogeneous spaces, Sibirsk Mat. Zh., 18 (1977), 280-293; English Transl, in Siberian Math. J., 18 (1977). [7] V. V. Gorbatsevich, The classification of four dimensional compact homogeneous spaces, Uspekhi Mat. Nauk, 32 (1977), no. 2, (1984), 207-208, (Russian). [8] V. V. Gorbatsevich, On aspherical homogeneous spaces, Mat. Sb., 100 (1974), 248-265, (Russian). [9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. [10] K. B. Lee and F. Raymond, Geometric realization of group extension by the Seifert construction, Contemp. Math., 36 (1985), 367-425. [11] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972. [12] F. Raymond and T. Vasques, 3-manifolds whose universal covering are Lie groups, Topology Appl., 12 (1981), 161-179. [13] O. Loos, Symmetric spaces I, Benjamin, New York, 1969.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -