Published: 1988 Received: May 28, 1987Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Homogeneous hypersurfaces in Kähler C-spaces with b2=1 Right : Homogeneous hypersurfaces in Kähler C-spaces with b2=1
Date of correction: October 20, 2006Reason for correction: -Correction: AFFILIATIONDetails: Wrong :
1) Mathematical Institute Tohoku Univeristy
Right :
1) Mathematical Institute Tôhoku University
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) C. Borcea, Smooth global complete intersections in certain homogeneous complex manifolds, J. Reine Angew. Math., 344 (1983), 65-70. 2) A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538. 3) A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145 (1962), 429-439. 4) A. Borel and A. Weil, Représentations linéaires et espaces homogènes kählériensdes groups de Lie compacts, Séminaire Bourbaki exp., 100 (1954). 5) R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248. 6) J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972. 7) Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math., 16 (1979), 97-119, II, Osaka J. Math., 17 (1980), 455-469. 8) Y. Kimura, A hypersurface of the irreducible Hermitian symmetric space of type EIII, Osaka J. Math., 16 (1979), 431-438. 9) Y. Kimura, On the hypersurfaces of Kähler C-spaces, Kobe Shôka-daigaku Jinbunronshû, 16 (1980), 1-15, (in Japanese). 10) K. Konno, Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds, Tohoku Math. J., 38 (1986), 609-624. 11) B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74 (1961), 329-387. 12) S. Mori and H. Sumihiro, On Hartshorne's conjecture, J. Math. Kyoto Univ., 18 (1978), 523-533. 13) H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667. 14) Y. Sakane, On non-singular hyperplane sections of some Hermitian symmetric spaces, Osaka J. Math., 22 (1985), 107-121. 15) H. C. Wang, Closed manifolds with homogeneous complex structures, Amer. J. Math., 76 (1954), 1-32.
Right : [1] C. Borcea, Smooth global complete intersections in certain homogeneous complex manifolds, J. Reine Angew. Math., 344 (1983), 65-70. [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538. [3] A. Borel and R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145 (1962), 429-439. [4] A. Borel and A. Weil, Représentations linéaires et espaces homogènes kählériens des groups de Lie compacts, Séminaire Bourbaki exp., 100 (1954). [5] R. Bott, Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248. [6] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972. [7] Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math., 16 (1979), 97-119, II, Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math., 17 (1980), 455-469. [8] Y. Kimura, A hypersurface of the irreducible Hermitian symmetric space of type EIII, Osaka J. Math., 16 (1979), 431-438. [9] Y. Kimura, On the hypersurfaces of Kähler C-spaces, Kobe Shôka-daigaku Jinbunronshû, 16 (1980), 1-15, (in Japanese). [10] K. Konno, Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds, Tôhoku Math. J., 38 (1986), 609-624. [11] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74 (1961), 329-387. [12] S. Mori and H. Sumihiro, On Hartshorne's conjecture, J. Math. Kyoto Univ., 18 (1978), 523-533. [13] H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667. [14] Y. Sakane, On non-singular hyperplane sections of some Hermitian symmetric spaces, Osaka J. Math., 22 (1985), 107-121. [15] H. C. Wang, Closed manifolds with homogeneous complex structures, Amer. J. Math., 76 (1954), 1-32.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -