Published: 1989 Received: December 07, 1987Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. Fried, The zeta functions of Ruelle and Selberg I, Ann. Sci. École Norm. Sup., 4e série, t. 19 (1986), 491-517. 2) R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Illinois J. Math., 21 (1977), 1-41. 3) R. Gangolli, On the length spectra of certain compact manifolds of negative curvature, J. Duff. Geom., 12 (1977), 403-423. 4) D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J., 43 (1976), 441-482. 5) D. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. I, Lecture Notes in Math., 548, Springer, 1976. 6) M. Kuga, Topological analysis and its applications in weakly symmetric Riemannian spaces, Sûgaku, 9 (1958), 166-185, (Japanese). 7) B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc., 80 (1974), 996-1000. 8) A. Selberg, Harmonic analysis and discontinuous subgroups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. 9) M. Wakayama, Zeta functions of Selberg's type for compact quotient of SU(n, 1) (n_??_2), Hiroshima Math. J., 14 (1984), 597-618. 10) M. Wakayama, Zeta functions of Selberg's type associated with homogeneous vector bundles, Hiroshima Math. J., 15 (1985), 235-295. 11) N. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of Γ_??_G, J. Duff. Geom., 11 (1976), 91-101. 12) G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I, II, Springer, 1972. 13) F. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London/New York, 1927.
Right : [1] D. Fried, The zeta functions of Ruelle and Selberg I, Ann. Sci. École Norm. Sup., 4e série, t. 19 (1986), 491-517. [2] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Illinois J. Math., 21 (1977), 1-41. [3] R. Gangolli, On the length spectra of certain compact manifolds of negative curvature, J. Duff. Geom., 12 (1977), 403-423. [4] D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J., 43 (1976), 441-482. [5] D. Hejhal, The Selberg Trace Formula for PSL(2,R), Vol. I, Lecture Notes in Math., 548, Springer, 1976. [6] M. Kuga, Topological analysis and its applications in weakly symmetric Riemannian spaces, Sûgaku, 9 (1958), 166-185, (Japanese). [7] B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc., 80 (1974), 996-1000. [8] A. Selberg, Harmonic analysis and discontinuous subgroups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. [9] M. Wakayama, Zeta functions of Selberg's type for compact quotient of SU(n,1) (n≥2), Hiroshima Math. J., 14 (1984), 597-618. [10] M. Wakayama, Zeta functions of Selberg's type associated with homogeneous vector bundles, Hiroshima Math. J., 15 (1985), 235-295. [11] N. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of Γ_??_G, J. Duff. Geom., 11 (1976), 91-101. [12] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I, II, Springer, 1972. [13] F. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London/New York, 1927.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -