Published: 1989 Received: January 29, 1988Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Niro Yanagihara on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. 2) H. W. Alt, S. Luckhaus and A. Visintin, On nonstationary flow through porous media, Ann. Mat. Pura Appl., 136 (1984), 303-316. 3) M. Bertsch and J. Hulshof, Regularity results for an elliptic-parabolic free boundary problem, Trans. Amer. Math. Soc., 297 (1986), 337-350. 4) H. Brézis, Operateurs Maximaux Monotones et Semi-grouper de Contractions Bans les Espaces de Hilbert, North-Holland, Amsterdam-London, 1973. 5) E. DiBenedetto and A. Friedman, Periodic behavior for the evolutionary dam problem and related free boundary problems, Comm. Partial Duff. Equations, 11 (1986), 1297-1377. 6) C. J. van Duyn and L. A. Peletier, Nonstationary filtration in partially saturated porous media, Arch. Rational Mech. Anal., 78 (1982), 173-198. 7) A. Fasano and M. Primicerio, Liquid flow in partially saturated porous media, J. Inst. Math. Applics., 23 (1979), 503-517. 8) U. Hornung, A parabolic-elliptic variational inequality, Manuscripta Math., 39 (1982), 155-172. 9) J. Hulshof, An elliptic-parabolic free boundary problem; continuity of the interface, Proc. Roy. Soc. Edinburgh, 106 (1987), 327-339. 10) J. Hulshof, Bounded weak solutions of an elliptic-parabolic Neumann problem, Trans. Amer. Math. Soc., 303 (1987), 211-227. 11) J. Hulshof and L. A. Peletier, An elliptic-parabolic free boundary problem, Nonlinear Anal., 10 (1986), 1327-1346. 12) N. Kenmochi and M. Kubo, Periodic solutions to a class of nonlinear variational inequalities with time-dependent constraints, Funkcial. Ekvac., 30 (1987), 333-349. 13) N. Kenmochi and Y. Mizuta, Potential theoretic properties of the gradient of a convex function on a functional space, Nagoya Math. J., 59 (1975), 199-215. 14) N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202. 15) N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles, Japan J. Appl. Math., 5 (1988), 87-121. 16) N. Kenmochi and I. Pawlow, Asymptotic behavior of solutions to parabolic-elliptic variational inequalities, to appear in Nonlinear Anal., 1989. 17) D. Kröner, Parabolic regularization and behaviour of the free boundary for unsaturated flow in a porous medium, J. Reine Angew. Math., 348 (1984), 180-196. 18) D. Kröner and J. F. Rodrigues, Global behaviour for bounded solutions of a porous media equation of elliptic-parabolic type, J. Math. Pures Appl., 64 (1985), 105-120. 19) U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. 20) J. Watanabe, Approximation of nonlinear problems of a certain type, Numer. Appl. Anal., 1 (1979), 147-163.
Right : [1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. [2] H. W. Alt, S. Luckhaus and A. Visintin, On nonstationary flow through porous media, Ann. Mat. Pura Appl., 136 (1984), 303-316. [3] M. Bertsch and J. Hulshof, Regularity results for an elliptic-parabolic free boundary problem, Trans. Amer. Math. Soc., 297 (1986), 337-350. [4] H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam-London, 1973. [5] E. DiBenedetto and A. Friedman, Periodic behavior for the evolutionary dam problem and related free boundary problems, Comm. Partial Duff. Equations, 11 (1986), 1297-1377. [6] C. J. van Duyn and L. A. Peletier, Nonstationary filtration in partially saturated porous media, Arch. Rational Mech. Anal., 78 (1982), 173-198. [7] A. Fasano and M. Primicerio, Liquid flow in partially saturated porous media, J. Inst. Math. Applics., 23 (1979), 503-517. [8] U. Hornung, A parabolic-elliptic variational inequality, Manuscripta Math., 39 (1982), 155-172. [9] J. Hulshof, An elliptic-parabolic free boundary problem: continuity of the interface, Proc. Roy. Soc. Edinburgh, 106 (1987), 327-339. [10] J. Hulshof, Bounded weak solutions of an elliptic-parabolic Neumann problem, Trans. Amer. Math. Soc., 303 (1987), 211-227. [11] J. Hulshof and L. A. Peletier, An elliptic-parabolic free boundary problem, Nonlinear Anal., 10 (1986), 1327-1346. [12] N. Kenmochi and M. Kubo, Periodic solutions to a class of nonlinear variational inequalities with time-dependent constraints, Funkcial. Ekvac., 30 (1987), 333-349. [13] N. Kenmochi and Y. Mizuta, Potential theoretic properties of the gradient of a convex function on a functional space, Nagoya Math. J., 59 (1975), 199-215. [14] N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202. [15] N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles, Japan J. Appl. Math., 5 (1988), 87-121. [16] N. Kenmochi and I. Pawlow, Asymptotic behavior of solutions to parabolic-elliptic variational inequalities, to appear in Nonlinear Anal., 1989. [17] D. Kröner, Parabolic regularization and behaviour of the free boundary for unsaturated flow in a porous medium, J. Reine Angew. Math., 348 (1984), 180-196. [18] D. Kröner and J. F. Rodrigues, Global behaviour for bounded solutions of a porous media equation of elliptic-parabolic type, J. Math. Pures Appl., 64 (1985), 105-120. [19] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. [20] J. Watanabe, Approximation of nonlinear problems of a certain type, Numer. Appl. Anal., 1 (1979), 147-163.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -