Published: 1990 Received: April 15, 1988Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) W. Abikoff, The Real Analytic Theory of Teichmüller Space, Lecture Notes in Math., 820, Springer, 1980. 2) L. Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, in Discrete Groups and Automorphic Functions, (W. J. Harvey ed.), Academic Press, London, New York, San Francisco, 1977, pp. 199-257. 3) W. J. Harvey, Spaces of discrete groups, in Discrete Groups and Automorphic Functions, (W. J. Harvey ed.), Academic Press, London, New York, San Francisco, 1977, pp. 295-348. 4) L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math., 84 (1966), 404-420. 5) L. Keen, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc., 83 (1977), 1199-1226. 6) M. Seppälä and T. Sorvali, On geometric parametrization of Teichmüller spaces, Ann. Acad. Sci. Fenn., 10 (1985), 515-526. 7) M. Seppälä and T. Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv., 61 (1986), 149-160. 8) M. Seppälä and T. Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, in Holomorphic Functions and Moduli II, (D. Drasin ed. et al.), Mathematical Sciences Research Institute Publications, 11, Springer, 1988, pp. 267-284. 9) T. Sorvali, Parametrization of free Möbius groups, Ann. Acad. Sci. Fenn., 579, 1974, pp. 1-12,
Right : [1] W. Abikoff, The Real Analytic Theory of Teichmüller Space, Lecture Notes in Math., 820, Springer, 1980. [2] L. Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, in Discrete Groups and Automorphic Functions, (W. J. Harvey ed.), Academic Press, London, New York, San Francisco, 1977, pp. 199-257. [3] W. J. Harvey, Spaces of discrete groups, in Discrete Groups and Automorphic Functions, (W. J. Harvey ed.), Academic Press, London, New York, San Francisco, 1977, pp. 295-348. [4] L. Keen, Intrinsic moduli on Riemann surfaces, Ann. of Math., 84 (1966), 404-420. [5] L. Keen, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc., 83 (1977), 1199-1226. [6] M. Seppälä and T. Sorvali, On geometric parametrization of Teichmüller spaces, Ann. Acad. Sci. Fenn., 10 (1985), 515-526. [7] M. Seppälä and T. Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv., 61 (1986), 149-160. [8] M. Seppälä and T. Sorvali, Parametrization of Teichmüller spaces by geodesic length functions, in Holomorphic Functions and Moduli II, (D. Drasin ed. et al.), Mathematical Sciences Research Institute Publications, 11, Springer, 1988, pp. 267-284. [9] T. Sorvali, Parametrization of free Möbius groups, Ann. Acad. Sci. Fenn., 579, 1974, pp. 1-12,
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -