Published: 1991 Received: September 22, 1989Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) W. Amrein, A. M. Berthier and V. Georgescue, On Mourre's approach to spectral theory, Helv. Phys. Acta., 62 (1989), 1-20. 2) H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Texts Monographs Phys., Springer-Verlag, 1987. 3) J. Derezinski, A new proof of the propagation theorem for N-body quantum systems, Commun. Math. Phys., 122 (1989), 203-231. 4) V. Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger Operators, Lect. Notes in Math., 1159, Springer-Verlag, 1984. 5) R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math. J., 49 (1982), 1075-1085. 6) T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1966), 258-279. 7) H. Kitada, On the completeness of N-body wave operators, University of Tokyo, Preprint, 1989. 8) E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Commun. Math. Phys., 78 (1981), 391-408. 9) P. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators, Ann, of Math., 114 (1981), 519-567. 10) M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory, Academic Press, 1978. 11) I. M. Sigal and A. Soffer, The N-particle scattering problem, Asymptotic completeness for short-range systems, Ann. of Math., 125 (1987), 35-108. 12) H. Tamura, Principle of limiting absorption for N-body Schrödinger operators, A remark on the commutator method, Lett. In Math. Phys., 17 (1987), 31-36.
Right : [1] W. Amrein, A. M. Berthier and V. Georgescue, On Mourre's approach to spectral theory, Helv. Phys. Acta., 62 (1989), 1-20. [2] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Texts Monographs Phys., Springer-Verlag, 1987. [3] J. Derezinski, A new proof of the propagation theorem for N-body quantum systems, Commun. Math. Phys., 122 (1989), 203-231. [4] V. Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger Operators, Lect. Notes in Math., 1159, Springer-Verlag, 1984. [5] R. Froese and I. Herbst, A new proof of the Mourre estimate, Duke Math. J., 49 (1982), 1075-1085. [6] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1966), 258-279. [7] H. Kitada, On the completeness of N-body wave operators, University of Tokyo, Preprint, 1989. [8] E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Commun. Math. Phys., 78 (1981), 391-408. [9] P. Perry, I. M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators, Ann. of Math., 114 (1981), 519-567. [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory, Academic Press, 1978. [11] I. M. Sigal and A. Soffer, The N-particle scattering problem, Asymptotic completeness for short-range systems, Ann. of Math., 125 (1987), 35-108. [12] H. Tamura, Principle of limiting absorption for N-body Schrödinger operators, A remark on the commutator method, Lett. In Math. Phys., 17 (1987), 31-36.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -