Published: 1991 Received: July 25, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) F. Buekenhout, Diagrams for geometries and groups, J. Combin. Theory Ser. A, 27 (1979), 121-151. 2) F. Buekenhout and X. Hubaut, Locally polar spaces and related rank 3 groups, J. Algebra, 45 (1977), 391-434. 3) R. W. Carter, Simple Groups of Lie Type, John Wiley & Sons, London, New York, 1972. 4) J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985. 5) A. Del Fra, D. Ghinelli, T. Meixner and A. Pasini, Flag-transitive extensions of Cn-geometries, Geom. Dedicata, to appear. 6) T. Meixner, Some polar towers, preprint. 7) T. Meixner, Two geometries related to the groups C03 and C01, preprint. 8) M. Ronan, Coverings of certain finite geometries, Finite Geometries and Designs, (eds P. Cameron, J. Hirschfeld and D. Hughes), London Math. Soc. Lecture Notes, 49 (1981), 316-331. 9) A. Rudvalis, A rank 3 simple group of order 214•33•53•7•13•29 I, J. Algebra, 86 (1984), 181-218. 10) G. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. Math., 97 (1974), 27-56. 11) M. Suzuki, A finite simple group of order 448, 345, 497, 600, Theory of Finite Groups, (eds. R. Brauer and C. Sah), Benjamin, New York, Amsterdam, 1969, pp. 113-119. 12) M. Suzuki, Transitive extensions of a class of doubly transitive groups, Nagoya Math. J., 27 (1966), 159-169. 13) J. Tits, Algebraic and abstract simple groups, Ann. Math., 80 (1964), 313-329. 14) R. Weiss and S. Yoshiara, A geometric characterization of the groups Suz and HS, J. Algebra, 133 (1990), 251-282. 15) R. Weiss, Extended generalized hexagons, Math. Proc. Cambridge Philos. Soc., 108 (1990), 7-19. 16) R. Weiss, A geometric characterization of the groups McL and C03, J. London Math. Soc., to appear. 17) S. Yoshiara, A classification of flag-transitive classical c. C2-geometries by means of generators and relations, preprint.
Right : [1] F. Buekenhout, Diagrams for geometries and groups, J. Combin. Theory Ser. A, 27 (1979), 121-151. [2] F. Buekenhout and X. Hubaut, Locally polar spaces and related rank 3 groups, J. Algebra, 45 (1977), 391-434. [3] R. W. Carter, Simple Groups of Lie Type, John Wiley & Sons, London, New York, 1972. [4] J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985. [5] A. Del Fra, D. Ghinelli, T. Meixner and A. Pasini, Flag-transitive extensions of Cn-geometries, Geom. Dedicata, to appear. [6] T. Meixner, Some polar towers, preprint. [7] T. Meixner, Two geometries related to the groups C03 and C01, preprint. [8] M. Ronan, Coverings of certain finite geometries, Finite Geometries and Designs, (eds P. Cameron, J. Hirschfeld and D. Hughes), London Math. Soc. Lecture Notes, 49 (1981), 316-331. [9] A. Rudvalis, A rank 3 simple group of order 214·33·53·7·13·29 I, J. Algebra, 86 (1984), 181-218. [10] G. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. Math., 97 (1974), 27-56. [11] M. Suzuki, A finite simple group of order 448, 345, 497, 600, Theory of Finite Groups, (eds. R. Brauer and C. Sah), Benjamin, New York, Amsterdam, 1969, pp. 113-119. [12] M. Suzuki, Transitive extensions of a class of doubly transitive groups, Nagoya Math. J., 27 (1966), 159-169. [13] J. Tits, Algebraic and abstract simple groups, Ann. Math., 80 (1964), 313-329. [14] R. Weiss and S. Yoshiara, A geometric characterization of the groups Suz and HS, J. Algebra, 133 (1990), 251-282. [15] R. Weiss, Extended generalized hexagons, Math. Proc. Cambridge Philos. Soc., 108 (1990), 7-19. [16] R. Weiss, A geometric characterization of the groups McL and C03, J. London Math. Soc., to appear. [17] S. Yoshiara, A classification of flag-transitive classical c. C2-geometries by means of generators and relations, preprint.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -