Published: 1992 Received: May 11, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Tadashi Nagano on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: AUTHORDetails: Wrong : Toru GOCHO1), Hiraku NAKAZIMA1) Right : Toru GOCHO1), Hiraku NAKAJIMA1)
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987. 2) P. J. Braam and P, van Baal, Nahm's transformation for instantons, Comm. Math. Phys., 122 (1989), 267-280. 3) D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, MSRI Publ., 1, Springer-Verlag, 1984. 4) K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds,Math. Ann., 282 (1988), 1-21. 5) N. J. Hitchin, Metrics on moduli spaces, in Proceedings of the Lefschez Centennial Conference (Contemporary Math, 58, Part I), A. M. S., Providence, R. I., 1986. 6) N. J. Hitchin, A. Karlhede, U. Lindström and M. Rocek, Hyperkähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987), 535-589. 7) M. Itoh, Gauge fields and quaternion structure, Kodai Math. J., 11 (1988), 344-360. 8) P. B. Kronheimer, The construction of ALE spaces as hyper-kähler quotients, J. Diff. Geom., 29 (1989), 665-683. 9) P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann., 288 (1990), 263-307. 10) S. Mukai, Duality between D(X) and D(X), with applications to Picard sheaves, Nagoya Math. J., 81 (1981), 153-175. 11) H. Nakajima, Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math., 102 (1990), 267-303. 12) T. Nitta, Yang-Mills connections on quaternionic Kähler quotients, Proc. Japan Acad., 66 (1990), 245-247. 13) H. Schenk, On a generalised Fourier transform of instantons over flat tori, Comm. Math. Phys., 116 (1988), 177-183. 14) A. F. Swann, Aspects symplectique de la géométrie quaternionique, C. R. Acad. Sci. Paris, 308 (1989), 225-228.
Right : [1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987. [2] P. J. Braam and P. van Baal, Nahm's transformation for instantons, Comm. Math. Phys., 122 (1989), 267-280. [3] D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, MSRI Publ., 1, Springer-Verlag, 1984. [4] K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds,Math. Ann., 282 (1988), 1-21. [5] N. J. Hitchin, Metrics on moduli spaces, in Proceedings of the Lefschez Centennial Conference (Contemporary Math, 58, Part I), A. M. S., Providence, R. I., 1986. [6] N. J. Hitchin, A. Karlhede, U. Lindström and M. Rocek, Hyperkähler metrics and supersymmetry, Comm. Math. Phys., 108 (1987), 535-589. [7] M. Itoh, Gauge fields and quaternion structure, Kodai Math. J., 11 (1988), 344-360. [8] P. B. Kronheimer, The construction of ALE spaces as hyper-kähler quotients, J. Diff. Geom., 29 (1989), 665-683. [9] P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann., 288 (1990), 263-307. [10] S. Mukai, Duality between D(X) and D(X), with applications to Picard sheaves, Nagoya Math. J., 81 (1981), 153-175. [11] H. Nakajima, Moduli spaces of anti-self-dual connections on ALE gravitational instantons, Invent. Math., 102 (1990), 267-303. [12] T. Nitta, Yang-Mills connections on quaternionic Kähler quotients, Proc. Japan Acad., 66 (1990), 245-247. [13] H. Schenk, On a generalised Fourier transform of instantons over flat tori, Comm. Math. Phys., 116 (1988), 177-183. [14] A. F. Swann, Aspects symplectique de la géométrie quaternionique, C. R. Acad. Sci. Paris, 308 (1989), 225-228.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -