Published: 1992 Received: December 28, 1990Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: DTRECEIVEDDetails: Wrong : 19901028 Right : 19901228
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : Ab) W. Abikoff, The real analytic theory of Teichmüller space, Lecture Note in Math., 820, Springer-Verlag, Berlin-Heidelberg, 1976. Ah) L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., 74 (1961), 171-191. B) A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup., (4), 7 (1974), 235-272. G1) W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225. G2) W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302. H) J. L. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math., 72 (1983), 221-239. K) S.P. Kerckhoff, The Nielsen realization problem, Ann. of Math., 117 (1983), 235-265. L) W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math., 76 (1962), 531-540. Ma) Y. Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. J., 14 (1962), 1-20. Mi) E. Y. Miller, The homology of the mapping class group, J. Differential Geom., 24 (1986), 1-14. Mo) S. Morita, Characteristic classes of surface bundles, Invent. Math., 90 (1987), 551-577, P) J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc., 68 (1978), 347-350. W1) S. Wolpert, The Fenchel-Nielsen deformation, Ann. of Math., 115 (1982), 501-528. W2) S. Wolpert,On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., 117 (1983), 207-234. W3) S. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math., 107 (1985), 969-997. W4) S. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom., 25 (1987), 275-296.
Right : [Ab] W. Abikoff, The real analytic theory of Teichmüller space, Lecture Note in Math., 820, Springer-Verlag, Berlin-Heidelberg, 1976. [Ah] L. V. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., 74 (1961), 171-191. [B] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup., (4), 7 (1974), 235-272. [G1] W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54 (1984), 200-225. [G2] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85 (1986), 263-302. [H] J. L. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math., 72 (1983), 221-239. [K] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math., 117 (1983), 235-265. [L] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math., 76 (1962), 531-540. [Ma] Y. Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. J., 14 (1962), 1-20. [Mi] E. Y. Miller, The homology of the mapping class group, J. Differential Geom., 24 (1986), 1-14. [Mo] S. Morita, Characteristic classes of surface bundles, Invent. Math., 90 (1987), 551-577, [P] J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc., 68 (1978), 347-350. [W1] S. Wolpert, The Fenchel-Nielsen deformation, Ann. of Math., 115 (1982), 501-528. [W2] S. Wolpert,On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., 117 (1983), 207-234. [W3] S. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math., 107 (1985), 969-997. [W4] S. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom., 25 (1987), 275-296.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -