Published: 1992 Received: August 13, 1991Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) K. Ambos-Spies, Honest polynomial time reducibilities and P=?NP problem, J. Comput. and System Sci., 39 (1989), 250-289. 2) R. Downey, On computational complexity and honest polynomial degrees, Theoret. Comput. Sci., 78 (1991), 305-317. 3) S. Homer, Minimal polynomial degrees for nonrecursive sets, Lecture Notes in Math., 1141, Springer-Verlag, 1985, pp. 193-202. 4) R. E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mech., 22 (1975), 155-171. 5) L. H. Landweber, R. J. Lipton and E. L. Robertson, On the structure of sets in NP and other complexity classes, Theoret. Comput. Sci., 15 (1981), 181-200. 6) R. W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math., 93 (1971), 285-314. 7) R. A. Shore and T. A. Slaman, The p-T degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two quantifier theory, in Proc. Structures in Complexity Theory, 4th Annual Conf., 1989, to appear. 8) R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.
Right : [1] K. Ambos-Spies, Honest polynomial time reducibilities and P=?NP problem, J. Comput. and System Sci., 39 (1989), 250-289. [2] R. Downey, On computational complexity and honest polynomial degrees, Theoret. Comput. Sci., 78 (1991), 305-317. [3] S. Homer, Minimal polynomial degrees for nonrecursive sets, Lecture Notes in Math., 1141, Springer-Verlag, 1985, pp. 193-202. [4] R. E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mech., 22 (1975), 155-171. [5] L. H. Landweber, R. J. Lipton and E. L. Robertson, On the structure of sets in NP and other complexity classes, Theoret. Comput. Sci., 15 (1981), 181-200. [6] R. W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math., 93 (1971), 285-314. [7] R. A. Shore and T. A. Slaman, The p-T degrees of the recursive sets: lattice embeddings, extensions of embeddings and the two quantifier theory, in Proc. Structures in Complexity Theory, 4th Annual Conf., 1989, to appear. [8] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -