Published: 1993 Received: February 03, 1992Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G.E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. 2) T. tom Dieck, Transformation groups, de Gruyter Studies in Math., 8, Berlin-New York, 1987. 3) C.J. Earle and J. Eells, A fibre bundle description of Teichmuller theory, J. Differential Geom., 3 (1969), 19-43. 4) D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840-856. 5) M.-E. Hamstrom, Homotopy properties of the space of homeomorphisms on P2 and the Klein bottle, Trans. Amer. Math. Soc., 120 (1965), 37-45. 6) O. Hanner, Some theorems on absolute neighbourhood retracts, Arkiv Mat., 1 (1951), 389-408. 7) V.L. Hansen, The homotopy groups of a space of maps between oriented closedsurfaces, Bull. London Math. Soc., 15 (1983), 360-364. 8) S.T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965. 9) J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. 10) T. Yamanoshita, On the spaces of self homotopy equivalences of certain CW-complexes, J. Math. Soc. Japan, 37 (1985), 455-470.
Right : [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. [2] T. tom Dieck, Transformation groups, de Gruyter Studies in Math., 8, Berlin-New York, 1987. [3] C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom., 3 (1969), 19-43. [4] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840-856. [5] M.-E. Hamstrom, Homotopy properties of the space of homeomorphisms on P2 and the Klein bottle, Trans. Amer. Math. Soc., 120 (1965), 37-45. [6] O. Hanner, Some theorems on absolute neighbourhood retracts, Arkiv Mat., 1 (1951), 389-408. [7] V. L. Hansen, The homotopy groups of a space of maps between oriented closed surfaces, Bull. London Math. Soc., 15 (1983), 360-364. [8] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965. [9] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. [10] T. Yamanoshita, On the spaces of self homotopy equivalences of certain CW-complexes, J. Math. Soc. Japan, 37 (1985), 455-470.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -