Published: 1993 Received: November 05, 1991Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. 2) E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorem, Ergodic Theory Dynamical Systems, 8* (1988), 73-85. 3) E. Fadell, Ideal-valued generalizations of Ljusternik-Schnirelmann category, with applications, Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 11-54. 4) J. Jaworowski, Maps of Stief el manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc., 32 (1989), 271-279. 5) J. Jaworowski, A Borsuk-Ulam theorem for O(m), Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 107-118. 6) J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton University Press, Princeton, 1974. 7) R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc., 36, Amer. Math. Soc., 1972. 8) E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. 9) N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951. 10) H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, Méthodes topologiques en analyse non linéaire, (ed. A. Granas), Sém. Math. Sup., 95, Presses Univ. Montreal, 1985, pp. 166-235.
Right : [1] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. [2] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorem, Ergodic Theory Dynamical Systems, 8* (1988), 73-85. [3] E. Fadell, Ideal-valued generalizations of Ljusternik-Schnirelmann category, with applications, Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 11-54. [4] J. Jaworowski, Maps of Stiefel manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc., 32 (1989), 271-279. [5] J. Jaworowski, A Borsuk-Ulam theorem for O(m), Topics in equivariant topology, (eds. E. Fadell, et al.), Sém. Math. Sup., 108, Presses Univ. Montreal, 1989, pp. 107-118. [6] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton University Press, Princeton, 1974. [7] R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc., 36, Amer. Math. Soc., 1972. [8] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. [9] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, 1951. [10] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, Méthodes topologiques en analyse non linéaire, (ed. A. Granas), Sém. Math. Sup., 95, Presses Univ. Montreal, 1985, pp. 166-235.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -