Published: 1994 Received: June 23, 1992Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Tsunero Takahashi on his sixtieth birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : Be) F. A. Berezin, Quantization, Math. USSR-Izv., 8 (1974), 1109-1165. BK) R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., 2 (1951), 878-890. CG) M. Cahen and S. Gutt, Regular * representations of Lie algebras, Lett. Math. Phys., 6 (1982), 395-404. G2) S. Gutt, Some aspects of deformation theory and quantization, Quantum Theories and Geometry, (eds., M. Cahen and M. Flato), Kluwer Academic Publishers, 1988, pp. 77-102. Ma) Y. Matsushima, Theory of Lie Algebras, (in Japanese) Gendai Suugaku-kouza 15, Kyouritsu Press. Mc) S. MacLane, Homology, Springer, 1963. S) R. Schafer, An Introduction to Non Associative Algebras, Academic Press, 1976. OMY1) H. Omori, Y. Maeda and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. in Math., 85 (1991), 224-255. OMY2) H. Omori, Y. Maeda and A. Yoshioka, On a construction of deformation quantization of Poisson algebras, Proceedings of the Workshop on Geometry and its applications in honor of Mono Obata, (eds., T. Nagano, H. Omori, Y. Maeda and M. Kanai), World Scientific, 1993, pp. 201-218. Ve) J. Vey, Déformation du crochet de Poisson sur variété symplectique, Comment. Math. Helv., 50 (1975), 421-454. VK) Yu. M. Vorob'ev and V. Karasev, Poisson manifolds and the Schouten bracket, Functional Anal. Appl., 22 (1988), 1-9. W) A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.
Right : [Be] F. A. Berezin, Quantization, Math. USSR-Izv., 8 (1974), 1109-1165. [BK] R. H. Bruck and E. Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., 2 (1951), 878-890. [CG] M. Cahen and S. Gutt, Regular * representations of Lie algebras, Lett. Math. Phys., 6 (1982), 395-404. [G2] S. Gutt, Some aspects of deformation theory and quantization, Quantum Theories and Geometry, (eds., M. Cahen and M. Flato), Kluwer Academic Publishers, 1988, pp. 77-102. [Ma] Y. Matsushima, Theory of Lie Algebras, (in Japanese) Gendai Suugaku-kouza 15, Kyouritsu Press. [Mc] S. MacLane, Homology, Springer, 1963. [S] R. Schafer, An Introduction to Non Associative Algebras, Academic Press, 1976. [OMY1] H. Omori, Y. Maeda and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. in Math., 85 (1991), 224-255. [OMY2] H. Omori, Y. Maeda and A. Yoshioka, On a construction of deformation quantization of Poisson algebras, Proceedings of the Workshop on Geometry and its applications in honor of Mono Obata, (eds., T. Nagano, H. Omori, Y. Maeda and M. Kanai), World Scientific, 1993, pp. 201-218. [Ve] J. Vey, Déformation du crochet de Poisson sur variété symplectique, Comment. Math. Helv., 50 (1975), 421-454. [VK] Yu. M. Vorob'ev and V. Karasev, Poisson manifolds and the Schouten bracket, Functional Anal. Appl., 22 (1988), 1-9. [W] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -