Published: 1994 Received: July 13, 1992Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: SUBTITLEDetails: Wrong : Dedicated to Professor Takasi Kusano on his 60th birthday
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. M. Ad'yutov, Yu. A. Klokov and A. P. Mikhailov, Some problems for an ordinary differential equation arising in gas dynamics, Differential Equations, 26 (1990), 803-805. 2) R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953, Reprint: Dover, New York, 1969. 3) A. J. Callegari and M. B. Friedman, An analytical solution of a nonlinear singular boundary value problem in the theory of viscous fields, J. Math. Anal. Appl., 21 (1968), 510-529. 4) A. J. Callegari and A. Nachman, Some singular, nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl., 64 (1978), 96-105. 5) A. J. Callegari and A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275-281. 6) T. A. Chanturiya, On the asymptotic representation of the solutions of the equation u”.a(t)|u|n sign u, Differential Equations, 8 (1972), 914-923. 7) M. A. Demidov, Yu. A. Klokov and A. P. Mikhailov, On some singular problems for second-order ordinary differential equations, Differentsial'nye Uravneniya, 23 (1987), 1278-1282. 8) T. Kusano and C. A. Swanson, Asymptotic theory of singular semilinear elliptic equations, Canad. Math. Bull., 27 (1984), 223-232. 9) H. Usami, On positive decaying solutions of singular Emden-Fowler type equations, Nonlinear Anal., 16 (1991), 795-803. 10) H. Usami, Positive solutions of singular Emden-Fowler type systems, Hiroshima Math. J., 22 (1992), 421-431.
Right : [1] M. M. Ad'yutov, Yu. A. Klokov and A. P. Mikhailov, Some problems for an ordinary differential equation arising in gas dynamics, Differential Equations, 26 (1990), 803-805. [2] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953, Reprint: Dover, New York, 1969. [3] A. J. Callegari and M. B. Friedman, An analytical solution of a nonlinear singular boundary value problem in the theory of viscous fields, J. Math. Anal. Appl., 21 (1968), 510-529. [4] A. J. Callegari and A. Nachman, Some singular, nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl., 64 (1978), 96-105. [5] A. J. Callegari and A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275-281. [6] T. A. Chanturiya, On the asymptotic representation of the solutions of the equation u″=a(t)|u|n sign u, Differential Equations, 8 (1972), 914-923. [7] M. A. Demidov, Yu. A. Klokov and A. P. Mikhailov, On some singular problems for second-order ordinary differential equations, Differentsial'nye Uravneniya, 23 (1987), 1278-1282. [8] T. Kusano and C. A. Swanson, Asymptotic theory of singular semilinear elliptic equations, Canad. Math. Bull., 27 (1984), 223-232. [9] H. Usami, On positive decaying solutions of singular Emden-Fowler type equations, Nonlinear Anal., 16 (1991), 795-803. [10] H. Usami, Positive solutions of singular Emden-Fowler type systems, Hiroshima Math. J., 22 (1992), 421-431.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -