Published: 1995 Received: June 28, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: DTRECEIVEDDetails: Right : 19930628
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : Idéaux k-rédults des ordres des corps quadratiques réels Right : Idéaux k-réduits des ordres des corps quadratiques réels
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) G. Eisenstein, J. Reine Angew. Math., 27 (1844), 86-87. (Werke I., Chelsea Publishing Company, New York, 1975, pp. 111-112.) 2) C. F. Gauss, Arithmetische Untersuchungen (Disquisitiones Aritmeticae), Chelsea Publishing Company, New York, 1965. 3) P. Kaplan et P. A. Leonard, Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein, L'Enseignement Mathématique, 39 (1993), 195-210. 4) P. Kaplan and K. S. Williams, The distance between ideals in the orders of a real ?Ideaux k-reduits des ordres des corps quadratiques reels 181 quadratic field, L'Enseignement Mathématique, 36 (1990), 321-358. 5) P. G. Lejeune Dirichlet and R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1968. 6) Y. Mimura, On odd solutions of the equation X2-DY2=4, Proceedings of the symposium on analytic number theory and related topics, Gakushuin University, Tokyo, 1992, pp. 110-118. 7) H. C. Williams, Eisenstein problem and continued fractions, Utilitas Math., 37 (1990), 145-158.
Right : [1] G. Eisenstein, J. Reine Angew. Math., 27 (1844), 86-87. (Werke I., Chelsea Publishing Company, New York, 1975, pp. 111-112.) [2] C. F. Gauss, Arithmetische Untersuchungen (Disquisitiones Aritmeticae), Chelsea Publishing Company, New York, 1965. [3] P. Kaplan et P. A. Leonard, Idéaux négativement réduits d'un corps quadratique réel et un problème d'Eisenstein, L'Enseignement Mathématique, 39 (1993), 195-210. [4] P. Kaplan and K. S. Williams, The distance between ideals in the orders of a real quadratic field, L'Enseignement Mathématique, 36 (1990), 321-358. [5] P. G. Lejeune Dirichlet and R. Dedekind, Vorlesungen über Zahlentheorie, Chelsea Publishing Company, New York, 1968. [6] Y. Mimura, On odd solutions of the equation X2-DY2=4, Proceedings of the symposium on analytic number theory and related topics, Gakushuin University, Tokyo, 1992, pp. 110-118. [7] H. C. Williams, Eisenstein problem and continued fractions, Utilitas Math., 37 (1990), 145-158.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -