Published: 1995 Received: September 13, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976. 2) L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983. 3) S. Klainerman, Remarks on the global Sobolev inequality in the Minkowski space Rn+1 Comm. Pure Appl. Math., 40 (1987), 111-116. 4) J. L. Lions and W. A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. 5) B. Marshall, W. A. Strauss and S. Wainger, Lp-Lq estimates for the Klein-Gordon equation, J. Math. Pures Appl., 59 (1980), 417-440. 6) A. Matsumura, Energy decay of solutions of dissipative wave equations, Proc. Japan Acad., 53 (1977), 232-236. 7) K. Mochizuki, Decay and asymptotics for wave equations with dissipative term, Lecture Notes in Phys., 39, 1975, Springer-Verlag, pp. 486-490. 8) K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 383-390. 9) K. Mochizuki, Scattering Theory for Wave Equations, (Japanese), Kinokuniya,1984. 10) T. Motai and K. Mochizuki, On asymptotic behaviors for wave equations with nonlinear dissipative term in RN, in preparation. 11) T. Motai, On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution, Tsukuba J. Math., 12 (1988), 353-369. 12) T. Motai, Asymptotic behavior of solutions to the Klein-Gordon equation with a nonlinear dissipative term, Tsukuba J. Math., 15 (1991), 151-160. 13) M. Nakao, Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237-250. 14) J. Rauch and M. Taylor, Decaying states of perturbed wave equation, J. Math. Anal. Appl., 54 (1976), 279-285. 15) W. A. Strauss, The Energy Method in Nonlinear Partial Differential Equations, Brasil Inst. Math. Pure e Aplicada, 1966.
Right : [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976. [2] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983. [3] S. Klainerman, Remarks on the global Sobolev inequality in the Minkowski space Rn+1 Comm. Pure Appl. Math., 40 (1987), 111-116. [4] J. L. Lions and W. A. Strauss, Some nonlinear evolution equations, Bull. Soc. Math. France, 93 (1965), 43-96. [5] B. Marshall, W. A. Strauss and S. Wainger, Lp-Lq estimates for the Klein-Gordon equation, J. Math. Pures Appl., 59 (1980), 417-440. [6] A. Matsumura, Energy decay of solutions of dissipative wave equations, Proc. Japan Acad., 53 (1977), 232-236. [7] K. Mochizuki, Decay and asymptotics for wave equations with dissipative term, Lecture Notes in Phys., 39, 1975, Springer-Verlag, pp. 486-490. [8] K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res. Inst. Math. Sci., Kyoto Univ., 12 (1976), 383-390. [9] K. Mochizuki, Scattering Theory for Wave Equations, (Japanese), Kinokuniya,1984. [10] T. Motai and K. Mochizuki, On asymptotic behaviors for wave equations with nonlinear dissipative term in RN, in preparation. [11] T. Motai, On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution, Tsukuba J. Math., 12 (1988), 353-369. [12] T. Motai, Asymptotic behavior of solutions to the Klein-Gordon equation with a nonlinear dissipative term, Tsukuba J. Math., 15 (1991), 151-160. [13] M. Nakao, Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237-250. [14] J. Rauch and M. Taylor, Decaying states of perturbed wave equation, J. Math. Anal. Appl., 54 (1976), 279-285. [15] W. A. Strauss, The Energy Method in Nonlinear Partial Differential Equations, Brasil Inst. Math. Pure e Aplicada, 1966.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -