Published: 1995 Received: June 12, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : A1) M. Anderson, Short geodesics and gravitational instantons, J. Differential Geom., 31 (1990), 265-275. A2) M. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102 (1990), 427-445. A3) M. Anderson, Metrics of positive Ricci curvature with large diameter, preprint. A4) M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology, 29 (1990), 41-55. AC) M. Anderson and J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and Ln/2-norm of curvature bounded, J. Differential Geom., 35 (1992), 265-281. B) A. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, 1978. BC) R. Bishop and R. L. Crittendon, Geometry of manifolds, Academic Press, New York, 1974. BZ) Yu. Burago and V. Zalgaller, Geometric inequalities, Springer-Verlag, New York,1988. C) C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup., 13 (1980), 419-435. CE) J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam and New York, 1975. CG) J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom., 6 (1971), 119-128. Ch) S. Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Z., 143 (1975), 289-297. Dk) D. Deturck and J. Kazdan, Regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup., 14 (1980), 249-260. Ga) L. Gao, Convergence of Riemannian manifolds, Ricci pinching and Ln/2-curvature pinching, J. Differential Geom., 32 (1990), 349-381. Gr) M. Gromov, Structures metrique pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris, 1981. GP) K. Grove and P. Petersen V, Manifolds near the boundary of existence, J.Differential Geom., 33 (1991), 379-394. GT) D. Gilbarg and N. S. Trüdinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1977. Mi) J. Milnor, Morse theory, Ann. of Math. Stud., No. 51, Princeton University Press, 1963. Mo) C. Morry, Multiple integrals in the calculus of variations, Springer-Verlag, Heidelberg, 1966. O) Y. Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z., 206 (1991), 255-264. P) S. Peters, Convergence of Riemannian manifolds, Compositio Math., 62 (1987), 3-16. S) T. Sakai, On the continuity of injectivity radius function, Math. J. Okayama Univ., 25 (1983), 91-97. Sh) K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc., 275 (1983), 811-819. SS) J. Schouten and D. Struik, On some properties of general manifolds relating to Einstein's theory of gravitation, Amer. J. Math., 43 (1921), 213-216. We) A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom., 9 (1974), 513-517. Wu1) J.-Y. Wu, The volume/diameter ratio for positively curved manifolds, Michigan Math. J., 37 (1990), 235-239. Wu2) J.-Y. Wu, Convergence of Riemannian 3-manifolds under Ricci curvature bound, Amer. J. Math., 116 (1994), 1019-1029. Yg) C. T. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom., 15 (1980), 91-96.
Right : [A1] M. Anderson, Short geodesics and gravitational instantons, J. Differential Geom., 31 (1990), 265-275. [A2] M. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102 (1990), 427-445. [A3] M. Anderson, Metrics of positive Ricci curvature with large diameter, preprint. [A4] M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology, 29 (1990), 41-55. [AC] M. Anderson and J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and Ln/2-norm of curvature bounded, J. Differential Geom., 35 (1992), 265-281. [B] A. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, 1978. [BC] R. Bishop and R. L. Crittendon, Geometry of manifolds, Academic Press, New York, 1974. [BZ] Yu. Burago and V. Zalgaller, Geometric inequalities, Springer-Verlag, New York, 1988. [C] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup., 13 (1980), 419-435. [CE] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam and New York, 1975. [CG] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom., 6 (1971), 119-128. [Ch] S. Y. Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Z., 143 (1975), 289-297. [Dk] D. Deturck and J. Kazdan, Regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup., 14 (1980), 249-260. [Ga] L. Gao, Convergence of Riemannian manifolds, Ricci pinching and Ln/2-curvature pinching, J. Differential Geom., 32 (1990), 349-381. [Gr] M. Gromov, Structures metrique pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris, 1981. [GP] K. Grove and P. Petersen V, Manifolds near the boundary of existence, J. Differential Geom., 33 (1991), 379-394. [GT] D. Gilbarg and N. S. Trüdinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1977. [Mi] J. Milnor, Morse theory, Ann. of Math. Stud., No. 51, Princeton University Press, 1963. [Mo] C. Morry, Multiple integrals in the calculus of variations, Springer-Verlag, Heidelberg, 1966. [O] Y. Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z., 206 (1991), 255-264. [P] S. Peters, Convergence of Riemannian manifolds, Compositio Math., 62 (1987), 3-16. [S] T. Sakai, On the continuity of injectivity radius function, Math. J. Okayama Univ., 25 (1983), 91-97. [Sh] K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc., 275 (1983), 811-819. [SS] J. Schouten and D. Struik, On some properties of general manifolds relating to Einstein's theory of gravitation, Amer. J. Math., 43 (1921), 213-216. [We] A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Differential Geom., 9 (1974), 513-517. [Wu1] J. -Y. Wu, The volume/diameter ratio for positively curved manifolds, Michigan Math. J., 37 (1990), 235-239. [Wu2] J. -Y. Wu, Convergence of Riemannian 3-manifolds under Ricci curvature bound, Amer. J. Math., 116 (1994), 1019-1029. [Yg] C. T. Yang, Odd-dimensional Wiedersehen manifolds are spheres, J. Differential Geom., 15 (1980), 91-96.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -