Published: 1996 Received: September 01, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. 2) S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. 3) A. Boukricha, Das Picard-Prinzip and verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann., 239 (1979), 247-270. 4) A. Boukricha, W. Hansen and H. Hueber, Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces, Exposition. Math., 5 (1987), 97-135. 5) C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer, 1969. 6) L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969. 7) Ü. Kuran, A new criterion of Dirichlet regularity via quasi-boundedness of the fundamental superharmonic function, J. London Math. Soc., 19 (1979), 301-311. 8) P. A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15 (1965), 597-600. 9) F.-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math., 803, Springer, 1980. 10) M. Nakai, Continuity of solutions of Schrödinger equations, Math. Proc. Cambridge Philos. Soc., 110 (1991), 581-597. 11) K. T. Sturm, Schrödinger semigroups on manifolds, J. Funct. Anal., 118 (1993), 309-350. 12) J. Wermer, Potential Theory, Lecture Notes in Math., 408, Springer, 1974. 13) Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334.
Right : [1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. [3] A. Boukricha, Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann., 239 (1979), 247-270. [4] A. Boukricha, W. Hansen and H. Hueber, Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces, Exposition. Math., 5 (1987), 97-135. [5] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer, 1969. [6] L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969. [7] Ü. Kuran, A new criterion of Dirichlet regularity via quasi-boundedness of the fundamental superharmonic function, J. London Math. Soc., 19 (1979), 301-311. [8] P. A. Loeb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15 (1965), 597-600. [9] F. -Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math., 803, Springer, 1980. [10] M. Nakai, Continuity of solutions of Schrödinger equations, Math. Proc. Cambridge Philos. Soc., 110 (1991), 581-597. [11] K. T. Sturm, Schrödinger semigroups on manifolds, J. Funct. Anal., 118 (1993), 309-350. [12] J. Wermer, Potential Theory, Lecture Notes in Math., 408, Springer, 1974. [13] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -